A. | 7 | B. | 6 | C. | 3 | D. | 2 |
分析 根據(jù)f(x)的對稱性和奇偶性可知f(x)在[-$\frac{1}{2}$,$\frac{5}{2}$]上共有3條對稱軸,x=0,x=1,x=2,根據(jù)三角函數(shù)的對稱性可知y=|cos(πx)|也關(guān)于x=0,x=1,x=2對稱,故而g(x)在[-$\frac{1}{2}$,$\frac{5}{2}$]上3條對稱軸,根據(jù)f(x)和y=|cos(πx)|在[0,1]上的函數(shù)圖象,判斷g(x)在[-$\frac{1}{2}$,$\frac{5}{2}$]上的零點(diǎn)分布情況,利用函數(shù)的對稱性得出零點(diǎn)之和.
解答 解:∵f(x)=f(2-x),∴f(x)關(guān)于x=1對稱,
∵f(-x)=f(x),∴f(x)根與x=0對稱,
∵f(x)=f(2-x)=f(x-2),∴f(x)=f(x+2),
∴f(x)是以2為周期的函數(shù),
∴f(x)在[-$\frac{1}{2}$,$\frac{5}{2}$]上共有3條對稱軸,分別為x=0,x=1,x=2,
又y=|cos(πx)關(guān)于x=0,x=1,x=2對稱,
∴x=0,x=1,x=2為g(x)的對稱軸.
作出y=|cos(πx)|和y=x3在[0,1]上的函數(shù)圖象如圖所示:
由圖象可知g(x)在(0,$\frac{1}{2}$)和($\frac{1}{2}$,1)上各有1個(gè)零點(diǎn).
又g(1)=0,∴g(x)在[-$\frac{1}{2}$,$\frac{5}{2}$]上共有7個(gè)零點(diǎn),
設(shè)這7個(gè)零點(diǎn)從小到大依次為x1,x2,x3,…x6,x7.
則x1,x2關(guān)于x=0對稱,x3,x5關(guān)于x=1對稱,x4=1,x6,x7關(guān)于x=2對稱.
∴x1+x2=0,x3+x5=2,x6+x7=4,
∴x1+x2+x3+x4+x5+x6+x7=7.
故選:A.
點(diǎn)評 本題考查了函數(shù)的周期性,奇偶性的應(yīng)用,函數(shù)零點(diǎn)個(gè)數(shù)判斷,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 他們的水平相當(dāng),但James 比Curry發(fā)揮穩(wěn)定 | |
B. | 他們的水平相當(dāng),但Curry比James 發(fā)揮穩(wěn)定 | |
C. | James比Curry水平高,也比Curry發(fā)揮穩(wěn)定 | |
D. | Curry比水平高,也比James發(fā)揮穩(wěn)定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4<a≤0 | B. | a<-4 | C. | -4<a<0 | D. | a≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com