15.若關(guān)于x、y的線性方程組$(\begin{array}{l}{m}&{1}\\{1}&{m}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{{m}^{2}}\\{m}\end{array})$有無窮多組解,則實(shí)數(shù)m的值是±1.

分析 當(dāng)系數(shù)矩陣D奇異時(shí),或者說行列式D=0時(shí),方程組有無數(shù)個(gè)解或無解.由此求得m值.

解答 解:系數(shù)矩陣D奇異時(shí),或者說行列式D=0時(shí),方程組有無窮多組解,
∴系數(shù)行列式D=0,
D=$|\begin{array}{l}{m}&{1}\\{1}&{m}\end{array}|$=m2-1=0,
解得:m=±1,
故答案為:±1.

點(diǎn)評 本題考查線性方程組解的問題,行列式的展開,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.集合A={-1,1,2}的所有真子集的個(gè)數(shù)是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x為實(shí)數(shù),命題p:?x∈R,x2+2x+1≥0,則命題p的否定是( 。
A.¬p:?x∈R,x2+2x+1<0B.¬p:?x∈R,x2+2x+1≤0
C.¬p:?x∈R,x2+2x+1<0D.¬p:?x∈R,x2+2x+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)2階方矩陣A=$(\begin{array}{l}{a}&\\{c}&cub6fdf\end{array})$,則矩陣A所對應(yīng)的矩陣變換為:$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{a}&\\{c}&z6riua0\end{array})$$(\begin{array}{l}{x′}\\{y′}\end{array})$,其意義是把點(diǎn)P(x,y)變換為點(diǎn)Q(x′,y′),矩陣A叫做變換矩陣.
(1)當(dāng)變換矩陣A1=$(\begin{array}{l}{1}&{2}\\{2}&{1}\end{array})$時(shí),點(diǎn)P1(-1,1),P2(-3,1)經(jīng)矩陣變換后得到點(diǎn)分別是Q1,Q2,求過點(diǎn)Q1,Q2的直線的點(diǎn)向式方程.
(2)當(dāng)變換矩陣A2=$(\begin{array}{l}{1}&{3}\\{8}&{-1}\end{array})$時(shí),若直線上的任意點(diǎn)P(x,y)經(jīng)矩陣變換后得到的點(diǎn)Q仍在該直線上,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(-x)=f(x),f(x)=f(2-x),當(dāng)x∈[0,1]時(shí),f(x)=x3.則函數(shù)g(x)=|cos(πx)|-f(x)在區(qū)間[-$\frac{1}{2}$,$\frac{5}{2}$]上的所有零點(diǎn)的和為( 。
A.7B.6C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(x+a)(|x|+2)+b(a,b∈R)
(1)若f(x)在R上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)若a≤-4且y=f(x)在[-1,1]上有兩個(gè)零點(diǎn),求a2+(b-17)2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.將參數(shù)方程$\left\{\begin{array}{l}x=t+\frac{1}{t}\\ y={t^2}+\frac{1}{t^2}\end{array}\right.$(t為參數(shù))化為普通方程為x2-y-2=0(y≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,在圓O中,已知弦長AB=2,則 $\overrightarrow{AO}•\overrightarrow{AB}$=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+(b-1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且對任意x∈R,都有f(2-x)=f(2+x),求f(x)的解析式;
(2)已知x1,x2為函數(shù)f(x)的兩個(gè)零點(diǎn),且x2-x1=2,當(dāng)x∈(x1,x2)時(shí),g(x)=-f(x)+2(x2-x)的最大值為h(a),當(dāng)a≥2時(shí),求h(a)的最小值.

查看答案和解析>>

同步練習(xí)冊答案