14.已知點(diǎn)A(1,2)、B(-2,3),在x軸上找一點(diǎn)P,使|PA|+|PB|有最小值.

分析 設(shè)點(diǎn)A(1,2)關(guān)于x軸的對稱點(diǎn)為A′(1,-2),則點(diǎn)P應(yīng)是直線A′B和x軸的交點(diǎn).用兩點(diǎn)式直線A′B的方程,可得點(diǎn)P的坐標(biāo).

解答 解:設(shè)點(diǎn)A(1,2)關(guān)于x軸的對稱點(diǎn)為A′(1,-2),則|PA|+|PB|=|PA′|+|PB|,
故當(dāng)點(diǎn)P是直線A′B和x軸的交點(diǎn)時(shí),|PA|+|PB|最小.
由于直線A′B的方程為$\frac{y+2}{3+2}$=$\frac{x-1}{-2-1}$.
令y=0,求得x=$\frac{1}{5}$,可得點(diǎn)P($\frac{1}{5}$,0).

點(diǎn)評 本題主要考查點(diǎn)關(guān)于直線對稱的性質(zhì),用兩點(diǎn)式求直線的方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=4cos($\frac{πx}{2}$+$\frac{π}{3}$),如果對于任意x∈R都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+3}{{x}^{2}+1}$,g(x)=x-ln(x-p).
(Ⅰ)求函數(shù)f(x)的圖象在點(diǎn)($\frac{1}{3}$,f($\frac{1}{3}$))處的切線方程;
(Ⅱ)判斷函數(shù)g(x)的零點(diǎn)個(gè)數(shù),并說明理由;
(Ⅲ)已知數(shù)列{an}滿足:0<an≤3,n∈N*,且3(a1+a2+…+a2015)=2015.若不等式f(a1)+f(a2)+..+f(a2015)≤g(x)在x∈(p,+∞)時(shí)恒成立,求實(shí)數(shù)p的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了保護(hù)環(huán)境,某市設(shè)立了若干個(gè)自行車自動(dòng)租賃點(diǎn),規(guī)定租車時(shí)間不超過一小時(shí)不收費(fèi),一小時(shí)以上不超過兩小時(shí)收費(fèi)一元,兩小時(shí)以上,不超過三小時(shí)收費(fèi)兩元(不足一小時(shí),按一小時(shí)計(jì)),甲、乙兩人各租車一輛,甲、乙租車時(shí)間不超過一小時(shí)的概率為$\frac{1}{2}$、$\frac{1}{4}$,一小時(shí)以上,不超過兩小時(shí)的概率為$\frac{1}{4}$、$\frac{1}{2}$,且兩人租車時(shí)間都不會超過三小時(shí)(甲、乙兩人租車時(shí)間相互獨(dú)立).
(1)求甲、乙兩人所付租車費(fèi)相等的概率;
(2)設(shè)兩人租車費(fèi)用之和為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=$\frac{4}{3}$an-$\frac{1}{3}×$2n+1+$\frac{2}{3}$,n∈N*
(Ⅰ)求證數(shù)列{an+2n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an
(Ⅱ)設(shè)T(n)=$\frac{{2}^{n}}{{S}_{n}}$,n∈N*,證明:$\sum_{i=1}^{n}$T(i)<$\frac{3}{2}$;
(Ⅲ)設(shè)R(n)=$\sum_{i=1}^{n}$$\frac{1}{i}$,n≥2,證明:$\frac{n}{2}$<R($\frac{{a}_{n}}{{2}^{n}}$)<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$,sinθ),$\overrightarrow{n}$=(1,cosθ),θ∈(0,$\frac{π}{2}$),$\overrightarrow{m}$與$\overrightarrow{n}$共線.
(Ⅰ)求θ的值;
(Ⅱ)求函數(shù)f(x)=sinx+sin(x-θ)在區(qū)間上[0,$\frac{5π}{6}$]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)滿足:x≥4,則f(x)=2x;當(dāng)x<4時(shí)f(x)=f(x+1),則f(2+log${\;}_{\frac{1}{2}}$3)=$\frac{64}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,若角A為銳角,且$\overrightarrow{AB}$=(2,3),$\overrightarrow{AC}$=(3,m),則實(shí)數(shù)m的取值范圍是$(-2,\frac{9}{2})∪(\frac{9}{2},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=asin(ωx+θ)-b的部分圖象如圖,其中ω>0,|θ|<$\frac{π}{2}$,a,b分別是△ABC的角A,B所對的邊,$cosC=f(\frac{C}{2})+1$,則△ABC的面積S=$\frac{{\sqrt{10}}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案