10.已知菱形的一個內(nèi)角是60°,邊長為a,沿菱形較短的對角線折成大小為60°的二面角,則菱形中含60°角的兩個頂點間的距離為$\frac{\sqrt{3}}{2}$a.

分析 取BD的中點E,連接AE,CE,則AE⊥BD,CE⊥BD,故∠AEC是二面角A-BD-C的平面角,判定△AEC是等邊三角形,即可得到結(jié)論.

解答 解:由題意,取BD的中點E,連接AE,CE,則AE⊥BD,CE⊥BD
∴∠AEC是二面角A-BD-C的平面角
∴∠AEC=60°,
∵菱形ABCD中,銳角A為60°,邊長為a,
∴AE=CE=$\frac{\sqrt{3}}{2}$a,
∴△AEC是等邊三角形
∴A與C之間的距離為$\frac{\sqrt{3}}{2}$a,
故答案為:$\frac{\sqrt{3}}{2}$a.

點評 本題考查面面角,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.f(x)=sin(x+θ)+$\sqrt{3}$cos(x-θ)為偶函數(shù),則θ的值為kπ-$\frac{π}{6}$(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圖中程序是計算2+3+4+5+6的值的程序.在WHILE后的①處和在s=s+i之后的②處所就填寫的語句可以是( 。
A.①i>1   ②i=i-1B.①i>1   ②i=i+1C.①i>=1   ②i=i+1D.①i>=1   ②i=i-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點F1,F(xiàn)2,且過橢圓一個焦點及頂點的直線方程為x-y+$\sqrt{3}$=0
(1)求橢圓E的方程;
(2)過點B(3,0)的直線l與橢圓E相交于點P,Q,過點A(2,1)的直線AP,AQ分別與x軸相交于M,N兩點,點C($\frac{5}{2}$,0),求證:|CM|•|CN|=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在一個盒子里裝有6枝圓珠筆,其中3枝一等品,2枝二等品和一枝三等品,從中任取3枝,則恰有2枝一等品的概率是$\frac{9}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.用分析法證明:$\sqrt{8}$+$\sqrt{7}$>$\sqrt{5}$+$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對下列函數(shù)求導(dǎo)正確的是( 。
A.(x2)′=xB.(${\frac{1}{x}}$)′=-$\frac{1}{x^2}$C.(${\sqrt{x}}$)′=$\frac{1}{{\sqrt{x}}}$D.(ln2)′=$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1、F2,離心率為$\frac{\sqrt{2}}{2}$,點M在橢圓上,且MF2⊥x軸,過F2作與OM垂直的弦CD,若△F1CD的面積為20$\sqrt{3}$,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直線y=-x+1的傾斜角是135°.

查看答案和解析>>

同步練習(xí)冊答案