2.若函數(shù)y=x3+x2+mx+1在(-∞,+∞)上是單調(diào)函數(shù),則實數(shù)a的取值范圍[$\frac{1}{3}$,+∞).

分析 求函數(shù)的導數(shù),利用函數(shù)單調(diào)性和導數(shù)之間的關(guān)系進行求解即可.

解答 解:函數(shù)的導數(shù)f′(x)=3x2+2x+m,
則f′(x)是開口向上的拋物線,
要使f(x)是單調(diào)函數(shù),則函數(shù)f(x)只能是單調(diào)遞增函數(shù),
此時滿足f′(x)≥0恒成立,
即f′(x)=3x2+2x+m≥0恒成立,
則判別式△=4-12m≤0,
即m≥$\frac{1}{3}$,
故答案為:[$\frac{1}{3}$,+∞)

點評 本題主要考查函數(shù)單調(diào)性的判斷,求函數(shù)的導數(shù),利用函數(shù)單調(diào)性和導數(shù)的關(guān)系轉(zhuǎn)化為不等式恒成立是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.長方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E為AB的中點,CE=3,異面直線A1C1與CE所成角的余弦值為$\frac{5\sqrt{3}}{9}$,且四邊形ABB1A1為正方形,則球O的直徑為4或$\sqrt{51}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=6x-x6,x∈R.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設曲線y=f(x)與x軸正半軸的交點為P,求曲線在點P處的切線方程;
(Ⅲ)若方程f(x)=a(a為實數(shù))有兩個實數(shù)根x1,x2且x1<x2,求證:x2-x1≤6${\;}^{\frac{1}{5}}$-$\frac{a}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.
(1)求證:BN丄平面C1B1N;
(2)設M為AB中點,在BC邊上找一點P,使MP∥平面CNB1,并求$\frac{BP}{PC}$的值.
(3)求點A到平面CB1N的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過(4,0)點,且與雙曲線x2-y2=2有相同的焦點.
(1)求橢圓E的標準方程;
(2)設點M(m,0)在橢圓E的長軸上,點P是橢圓上任意一點,當|$\overrightarrow{MP}}$|最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.(1)已知x,y∈(0,+∞),且2x+3y=1,求證:$\frac{1}{x}$+$\frac{1}{y}$≥5+2$\sqrt{6}$;
(2)已知a,b,c均為正數(shù),求證:$\frac{a}{bc}$+$\frac{ca}$+$\frac{c}{ab}$≥$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知$\vec a$=(2,-1,3),$\vec b$=(-4,2,x),$\vec c$=(1,-x,2),若($\vec a$+$\vec b$)⊥$\vec c$,則實數(shù)x的值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.為了了解小學生的體能情況,抽取了某校一個年級的部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.
(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達標,試估計該年級學生跳繩測試的達標率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.給出下列命題:
(1)若$|\overrightarrow a|=|\overrightarrow b|$,則$\overrightarrow a=\overrightarrow b$;   
(2)向量不可以比較大。
(3)若$\overrightarrow a=\overrightarrow b,\overrightarrow b=\overrightarrow c$,則$\overrightarrow a=\overrightarrow c$; 
(4)$\overrightarrow a=\overrightarrow b?|\overrightarrow a|=|\overrightarrow b|,\overrightarrow a∥\overrightarrow b$
其中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案