5.若|sinα|=sin(-π+α),則α的取值范圍是{α|-π+2kπ≤α≤2kπ,k∈Z}.

分析 利用誘導(dǎo)公式化簡|sinα|=sin(-π+α)的右邊,然后可得sinα≤0,從而得到α的取值范圍.

解答 解:∵|sinα|=sin(-π+α)=-sinα,
∴sinα≤0,
則α的范圍為-π+2kπ≤α≤2kπ,k∈Z.
故答案為:{α|-π+2kπ≤α≤2kπ,k∈Z}

點評 本題考查運用誘導(dǎo)公式化簡求值,考查了三角函數(shù)符號的判斷,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.平面內(nèi)與兩個定點F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓,這兩個定點做橢圓的焦點,兩焦點的距離叫做橢圓的焦距.
集合P={M|MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c為常數(shù):
(1)若a>c,則集合P為橢圓;
(2)若a=c,則集合P為線段;
(3)若a<c,則集合P為空集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.a(chǎn)1=2,an+1=an+ln(1+$\frac{1}{n}$),an=2+lnn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x+$\frac{9}{x}$.
(1)判斷并證明f(x)在(3,+∞)上的單調(diào)性;
(2)求函數(shù)f(x)在[6,9]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計算:
(1)2lg2+lg25;
(2)3${\;}^{1+lo{g}_{3}2}$;
(3)3log22+log2$\sqrt{2}$;
(4)lg60-lg6;
(5)log280-log24-log25;
(6)log3$\frac{27}{5}$+log325-log35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.點(1,-1)關(guān)于直線2x+3y-6=0的對稱點坐標(biāo)為($\frac{41}{13}$,$\frac{29}{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$).
(1)若函數(shù)定義在(0,$\frac{π}{2}$)上,求函數(shù)的值域;
(2)若函數(shù)定義在R上,求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若直線y=kx+3經(jīng)過M(4,2),則k=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個不透明圓錐體的正視圖和側(cè)視圖(左視圖)為兩全等的正三角形,若將它倒立放在桌面上(即圓錐體的頂點在桌面上),則該圓錐體在桌面上從垂直位置旋轉(zhuǎn)到水平位置的過程中,其在水平桌面上正投影不可能是( 。
A.
   圓形區(qū)域
B.
等腰三角形兩腰與半橢圓圍成的區(qū)域
C.
等腰三角形兩腰與半圓圍成的區(qū)域
D.
   橢圓形區(qū)域

查看答案和解析>>

同步練習(xí)冊答案