已知集合A={p|x2+2(p-1)x+1=0,x∈R},求集合B={y|y=2x-1,x∈A}.
考點(diǎn):集合的表示法
專題:函數(shù)的性質(zhì)及應(yīng)用,集合
分析:根據(jù)一元二次方程有根,△≥0,可求出集合A,進(jìn)而根據(jù)一次函數(shù)的圖象和性質(zhì),得到集合B.
解答: 解:若x2+2(p-1)x+1=0有根,
則△=4(p-1)2-4≥0,
解得p∈(-∞,0]∪[2,+∞),
即集合A=(-∞,0]∪[2,+∞),
故集合B={y|y=2x-1,x∈A}=(-∞,-1]∪[3,+∞)
點(diǎn)評:本題考查的知識(shí)點(diǎn)是一元二次方程根的個(gè)數(shù)與△的關(guān)系,一次函數(shù)的圖象和性質(zhì),難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列各組數(shù)據(jù)中方差最大的是( 。
A、2,6,7
B、2,5,8
C、1,6,8
D、1,5,9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=
t
-
1
t
y=3(t+
1
t
)+2
(t為參數(shù),t>0).求曲線C的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)圓x2+y2=1在矩陣A=
10
02
對應(yīng)的變換作用下得到曲線F,求曲線F的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知An5=56Cn7,且(1-2x)n=a0+a1x+a2x2+a3x3+…+anxn
(Ⅰ)求n的值;
(Ⅱ)求a1+2a2+3a3+…+nan的值.
(Ⅲ) 求S=Cn0+3Cn1+5Cn2+…+(2n-1)Cnn-1+(2n+1)Cnn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為a的正方體ABCD-A′B′C′D′中,如圖E、F分別為棱AB與BC的中點(diǎn),EF∩BD=H;
(Ⅰ)求二面角B′-EF-B的正切值;
(Ⅱ)試在棱B′B上找一點(diǎn)M,使D′M⊥面EFB′,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=10,a2=5,an-an+2=2(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前2n項(xiàng)和為S2n,當(dāng)S2n取最大值時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知位于y軸左側(cè)的圓C與y軸相切于點(diǎn)(0,1),且被x軸分成的兩段弧長之比為2:1,過點(diǎn)H(0,t)的直線l與圓C相交于M,N兩點(diǎn),且以MN為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.
(1)求圓C的方程;
(2)當(dāng)t=1時(shí),求出直線l的方程;
(3)求直線OM的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.?dāng)?shù)列{bn}的前n項(xiàng)和為Sn,且3Sn=bn+2,n∈N*,
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=
an   n為奇數(shù)
bn  n為偶數(shù)
,求數(shù)列{cn}的前2n+1項(xiàng)的和T2n+1

查看答案和解析>>

同步練習(xí)冊答案