A. | $\frac{π}{2}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
分析 利用三角形的面積計算公式可得$\frac{1}{2}$×$\frac{\sqrt{3}}{6}$a2=$\frac{1}{2}$bcsinA即a2=2$\sqrt{3}$bcsinA,利用余弦定理及已知可得$\frac{c}$+$\frac{c}$=4sin(A+$\frac{π}{6}$)≤4,從而可解得A的值.
解答 解:∵$\frac{1}{2}$×$\frac{\sqrt{3}}{6}$a2=$\frac{1}{2}$bcsinA,
∴a2=2$\sqrt{3}$bcsinA.
∵cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,
∴b2+c2=a2+2bccosA=2$\sqrt{3}$bcsinA+2bccosA
∴$\frac{c}$+$\frac{c}$=2$\sqrt{3}$sinA+2cosA=4sin(A+$\frac{π}{6}$)≤4,
∴$\frac{c}$+$\frac{c}$的最大值是4時有A+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z
∴可解得:A=2kπ+$\frac{π}{3}$,k∈Z
∵0<A<π
∴A=$\frac{π}{3}$.
故選:D.
點評 本題考查了三角形的面積計算公式、余弦定理、兩角和差的正弦計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 曲線C關(guān)于坐標(biāo)原點對稱 | B. | 曲線C關(guān)于y軸對稱 | ||
C. | 曲線C關(guān)于x軸對稱 | D. | 曲線C過坐標(biāo)原點 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | BD | B. | AD | C. | AC | D. | 平面BCD之內(nèi) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,$\sqrt{2}$] | B. | (1,$\sqrt{2}$) | C. | ($\sqrt{2}$,+∞) | D. | [$\sqrt{2}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com