8.如圖,網(wǎng)格紙上每個小正方形的邊長均為1,某幾何體的三視圖如圖中粗線所示,則該幾何體的所有棱中最長的棱的長度是( 。
A.4$\sqrt{6}$B.2$\sqrt{21}$C.6D.4$\sqrt{2}$

分析 由三視圖可知:該幾何體是一個三棱錐,其中△PAC是一個等腰三角形,△ABC是一個直角三角形,AC⊥BC,二面角P-AC-B的平面角為135°

解答 解:由三視圖可知:該幾何體是一個三棱錐,其中△PAC是一個等腰三角形,△ABC是一個直角三角形,AC⊥BC,二面角P-AC-B的平面角為135°
該幾何體的所有棱中最長的棱的長度是PB=$\sqrt{(4\sqrt{2})^{2}+{4}^{2}-2×4\sqrt{2}×4cos13{5}^{°}+{2}^{2}}$=2$\sqrt{21}$.
故選:B.

點評 本題考查了三視圖的有關計算、余弦定理、勾股定理、二面角的平面角,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖,邊長為4的正方形ABED的對邊AB、ED的中點為C、F,將此正方形沿著CF折成120°的二面角,連AB、DE得一直三棱柱,則此三棱柱外接球的表面積等于( 。
A.16πB.32πC.D.64π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知某幾何體的三視圖如圖所示,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的側面積為( 。
A.(200+100$\sqrt{3}$)cm2B.(200+100π)cm2C.(200+50$\sqrt{5}$π)cm2D.(300+50π)cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.幾何體EFG-ABCD的面ABCD,ADGE,DCFG均為矩形,AD=DC=1,AE=$\sqrt{2}$.
(Ⅰ)求證:EF⊥平面GDB;
(Ⅱ)線段DG上是否存在點M使直線BM與平面BEF所成的角為45°?若存在,求$\frac{DM}{DG}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1+\sqrt{2}cos(2x-\frac{π}{4})}{cosx}$
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{2}$)上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=f(x)的定義域為D,若滿足:
①f(x)在D內是單調函數(shù);
②存在[a,b]⊆D使得f(x)在[a,b]上的值域為[${\frac{a}{2}$,$\frac{2}}$],則稱函數(shù)f(x)為“成功函數(shù)”.
若函數(shù)f(x)=logc(cx+t)(c>0,c≠1)是“成功函數(shù)”,則t的取值范圍為( 。
A.(0,+∞)B.(-∞,$\frac{1}{4}}$)C.(${\frac{1}{4}$,+∞)D.(0,$\frac{1}{4}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)y=x$\sqrt{1-\frac{1}{2}{x}^{2}}$的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則此幾何體的體積為( 。
A.$\frac{\sqrt{3}}{6}$πB.$\frac{\sqrt{3}}{3}$πC.$\sqrt{3}$πD.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{m+1}{2}$x2+x,g(x)=$\frac{1}{3}$-(m-1)x,m∈R.
(Ⅰ)若f(x)在x=1取得極值,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)若f(x)在區(qū)間($\frac{1}{2}$,+∞)上為增函數(shù),求m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,求函數(shù)h(x)=f(x)-g(x)的單調區(qū)間和極值.

查看答案和解析>>

同步練習冊答案