2.如圖,矩形ABCD中,E,F(xiàn)分別在線段BC和AD上,EF∥AB,將矩形ABCD沿EF折起,記折起后的矩形為MNEF.
(Ⅰ)求證:NC∥平面MFD;
(Ⅱ)若四邊形ECDF為正方形且平面MNEF⊥平面ECDF,求證:平面NED⊥平面NFC.

分析 (Ⅰ)根據(jù)線面平行的判定定理證明NC∥平面MFD;
(Ⅱ)根據(jù)面面垂直的判定定理即可證明平面平面NED⊥平面NFC.

解答 證明:(Ⅰ)∵四邊形MNEF,EFDC都是平行四邊形,
∴MN∥EF,EF∥CD,MN=EF,EF=CD,
∴四邊形MNCD是平行四邊形,
∴NC∥MD,
∵NC?平面MFD,MD?平面MFD,
∴NC∥平面MFD;
(Ⅱ)連結(jié)ED,
∵平面NMNEF⊥平面ECDF,且NE⊥EF,
∴NE⊥平面ECDF,
∴FC⊥NE,
∵四邊形ECDF為正方形,
∴FC⊥ED,
∵NE∩ED=E,EN?平面NED,ED?平面NED,
∴FC⊥平面NFC,
∵FC?平面NFC,
∴平面NED⊥平面NFC.

點(diǎn)評 本題主要考查空間直線和平面平行以及平面和平面垂直的判定,要求熟練掌握相應(yīng)的判定定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)x,y,z是不全為0的實(shí)數(shù),則$\frac{xy+yz+xz}{3{x}^{2}+3{y}^{2}+3{z}^{2}}$的最大值是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在(1-x)6的展開式中,含x4項(xiàng)的系數(shù)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知△ABC的三邊a、b、c所對的角分別為A、B、C,且a:b:c=7:5:3.
(1)求cosA的值;
(2)若△ABC的面積為45$\sqrt{3}$,求△ABC的外接圓半徑的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.從甲、乙、丙、丁、戊、己6人中選4人參加4×100接力賽,甲,乙都不跑中間兩棒,有144種選法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點(diǎn)E,F(xiàn),且EF=1,
則四面體A-EFB的體積V=$\frac{{\sqrt{2}}}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)在給定區(qū)間M上,存在正數(shù)t,使得對于任意x∈M,有x+t∈M,且f(x+t)≥f(x),則稱f(x)為M上的t級類增函數(shù),則下列命題正確的是(  )
A.函數(shù)f(x)=$\frac{4}{x}$+x是(1,+∞)上的1級類增函數(shù)
B.函數(shù)f(x)=|log2(x-1)|是(1,+∞)上的1級類增函數(shù)
C.若函數(shù)f(x)=x2-3x為[1,+∞)上的t級類增函數(shù),則實(shí)數(shù)t的取值范圍為[1,+∞)
D.若函數(shù)f(x)=sinx+ax為[$\frac{π}{2}$,+∞)上的$\frac{π}{3}$級類增函數(shù),則實(shí)數(shù)a的取值范圍為[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖是一個長方體ABCD-A1B1C1D1被一個平面截去一部分后,所得多面體的直觀圖,已知AB=6,AD=AA1=4,BE=CF=2.
(Ⅰ)若點(diǎn)M的棱DD1的中點(diǎn),求證:BM∥平面A1EFD;
(Ⅱ)求此多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別是F1,F(xiàn)2,且F2的坐標(biāo)為(1,0),離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)A是橢圓C的左頂點(diǎn),直線l的方程為x=4,過F2的直線l′與橢圓C相交于異于點(diǎn)A的P,Q兩點(diǎn).
①求$\overrightarrow{AP}•\overrightarrow{AQ}$的取值范圍;
②若直線AP,AQ與直線l分別相交于M,N兩點(diǎn),求證:兩動點(diǎn)M,N的縱坐標(biāo)之積為定值,并求此定值.

查看答案和解析>>

同步練習(xí)冊答案