7.如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=1,
則四面體A-EFB的體積V=$\frac{{\sqrt{2}}}{12}$.

分析 計(jì)算三角形BEF的面積和A到平面BEF的距離,即可求出所求幾何體的體積.

解答 解:由題意可知,由于點(diǎn)B到直線B1D1的距離不變,故△BEF的面積為$\frac{1}{2}×1×1$=$\frac{1}{2}$.
又點(diǎn)A到平面BEF的距離為$\frac{\sqrt{2}}{2}$,
故VA-BEF=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{2}}{2}$=$\frac{{\sqrt{2}}}{12}$.
故答案為:$\frac{{\sqrt{2}}}{12}$.

點(diǎn)評 本題考查了正方體的性質(zhì)、三棱錐的體積公式,考查了學(xué)生的空間想象能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在極坐標(biāo)系中,已知曲線C:ρ2+2ρsinθ+$\frac{3}{4}$=0(ρ∈R),l為過定點(diǎn)(2,-1)且與直線θ=$\frac{π}{4}$平行的直線,A、B分別為曲線C和直線l上的動(dòng)點(diǎn).
(1)將曲線C和直線l分別化為直角坐標(biāo)系下的方程;
(2)求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax2-(2a+1)x+lnx,a∈R.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=2ax2-2(a+1)x恰有兩個(gè)不等的實(shí)根,求實(shí)數(shù)a的取值范圍;
(3)設(shè)g(x)=ex-x-1,若對任意的x1∈(0,+∞),x2∈R,不等式f(x1)≤g(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解不等式組$\left\{\begin{array}{l}{{x}^{2}+2|x|-3<0}\\{|{x}^{2}-x|≤2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,矩形ABCD中,E,F(xiàn)分別在線段BC和AD上,EF∥AB,將矩形ABCD沿EF折起,記折起后的矩形為MNEF.
(Ⅰ)求證:NC∥平面MFD;
(Ⅱ)若四邊形ECDF為正方形且平面MNEF⊥平面ECDF,求證:平面NED⊥平面NFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的一塊形狀為四棱柱的木料中,側(cè)面AB-CD⊥底面ABB1A1;側(cè)面ABCD是邊長為4的菱形,且∠DAB=60°;底面ABB1A1是直角梯形,其中∠A1AB=90°,AA1∥BB1,AA1=3,BB1=1;P為面A1C1內(nèi)的點(diǎn).
(Ⅰ)為了經(jīng)過點(diǎn)P和棱BC將木料鋸開,應(yīng)怎樣畫線?請說明理由;
(Ⅱ)若P為A1C1的中點(diǎn),求按照(Ⅰ)的要求將木料鋸開后較大木塊的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖三棱柱ABC-A1B1C1中,點(diǎn)M為AB的中點(diǎn).
(Ⅰ)求證:BC1∥平面A1CM;
(Ⅱ)若CA=CB,A1在平面ABC的射影為M,求證:平面A1CM⊥平面ABB1 A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,AC=BC,D、E、F分別為棱AB,BC,A1C1的中點(diǎn).
(1)證明:EF∥平面A1CD;
(2)證明:平面A1CD⊥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若一個(gè)函數(shù)存在定義域和值域相同的區(qū)間,則稱這個(gè)函數(shù)為這個(gè)區(qū)間上的一個(gè)“保城函數(shù)”,給出下列四個(gè)函數(shù):
①f(x)=-x3;
②f(x)=3x
③f(x)=sin$\frac{πx}{3}$;
④f(x)=2ln3x-3.
其中可以找到一個(gè)區(qū)間使其成為保城函數(shù)的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案