15.設(shè)A={x|x2+(2a-3)x-3a=0},B={x|x2+(a-3)x+a2-3a=0},若A≠B,A∩B≠∅,試求A∪B.

分析 由題意設(shè)公共根是b,代入兩方程,作差可得b=a,即公共根就是a,進(jìn)一步代入原方程求解兩集合得答案.

解答 解:∵A∩B≠∅,∴兩個(gè)方程有公共根,
設(shè)公共根是b,
則b2+(2a-3)b-3a=0,b2+(a-3)b+a2-3a=0,
兩式相減得:ab-a2=0,即a(b-a)=0.
若a=0,則兩個(gè)方程都是x2-3x=0,與A≠B矛盾; 
∴a≠0,則b=a,
∴公共根就是a,
代入x2+(2a-3)x-3a=0,得a2+a(2a-3)-3a=0,
即a2-2a=0,解得a=0(舍),a=2.
∴A={x|x2+x-6=0}={-3,2},
B={x|x2-x-2=0}={-1,2},
∴A∪B={2,-3,-1}.

點(diǎn)評(píng) 本題考查交集及其運(yùn)算,考查數(shù)學(xué)轉(zhuǎn)化思想方法,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.以下四個(gè)命題中,真命題的是( 。
A.?x∈(0,π),使sinx=tanx
B.“對(duì)任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1<0”
C.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)
D.△ABC中,“sinA+sinB=cosA+cosB”是“C=$\frac{π}{2}$”的充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為非零向量,則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$( 。
A.是三個(gè)向量的數(shù)量積B.是與$\overrightarrow{a}$共線的向量
C.是與$\overrightarrow{c}$共線的向量D.無(wú)意義

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列各組不等式中同解的是( 。
A.x>6與x(x-3)2>6(x-3)2B.$\sqrt{2x+1}$(x-2)≥0與x≥2
C.x2-3x+3+$\frac{1}{x-3}$>$\frac{x-2}{x-3}$與x2-3x+2>0D.$\frac{x-2}{(x+1)^{2}(x-1)}$>0與x2-3x+2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知a,b,c滿足:a=20.1,2b=log${\;}_{\frac{1}{2}}$b,c${\;}^{\frac{1}{2}}$=log2$\frac{1}{c}$,則a,b,c的大小是(  )
A.a>c>bB.a>b>cC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知sin(π-α)-cos(π-α)=$\frac{\sqrt{2}}{3}$($\frac{π}{2}$<α<π).求下列各式的值:
(1)sinα•cosα;
(2)sinα-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算:
S=(1+2)(1+22)(1+24)(1+28)(1+216)(1+232)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.每逢節(jié)假日,在微信好友群發(fā)紅包逐漸成為一種時(shí)尚,還能增進(jìn)彼此的感情.2015年中秋節(jié)期間,小魯在自己的微信校友群,向在線的甲、乙、丙、丁四位校友隨機(jī)發(fā)放紅包,發(fā)放的規(guī)則為:每次發(fā)放1個(gè),每個(gè)人搶到的概率相同.
(1)若小魯隨機(jī)發(fā)放了3個(gè)紅包,求甲至少得到1個(gè)紅包的概率;
(2)若丁因有事暫時(shí)離線一段時(shí)間,而小魯在這段時(shí)間內(nèi)共發(fā)放了3個(gè)紅包,其中2個(gè)紅包中各有5元,1個(gè)紅包有10元,記這段時(shí)間內(nèi)乙所得紅包的總錢數(shù)為X元,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a6=S3=12,求{an}的通項(xiàng)an;
(2)等比數(shù)列{an}中,a5-a1=15,a4-a2=6,求公比q.

查看答案和解析>>

同步練習(xí)冊(cè)答案