6.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為非零向量,則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$( 。
A.是三個(gè)向量的數(shù)量積B.是與$\overrightarrow{a}$共線的向量
C.是與$\overrightarrow{c}$共線的向量D.無意義

分析 運(yùn)用向量數(shù)量積的定義,可得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cos<$\overrightarrow{a}$,$\overrightarrow$>,即為數(shù)量,結(jié)合向量共線定理,可得A,B,D均錯(cuò),C正確.

解答 解:由$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$為非零向量,
可得$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cos<$\overrightarrow{a}$,$\overrightarrow$>,
顯然$\overrightarrow{a}$•$\overrightarrow$為數(shù)量,設(shè)為t,
則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=t$\overrightarrow{c}$,
即有($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$是與$\overrightarrow{c}$共線的向量,
故A,B,D均錯(cuò),C正確.
故選:C.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的定義和性質(zhì),考查推理和判斷能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a∈Z,且0≤a<13,若1220+a能被13整除,則a=(  )
A.0B.1C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求M在AB的延長(zhǎng)線上,N在AD的延長(zhǎng)線上,且對(duì)角線MN過點(diǎn)C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.
(1)按下列要求建立函數(shù)關(guān)系;
(i)設(shè)AN=x米,將S表示為x的函數(shù);
(ii)設(shè)∠BMC=θ(rad),將S表示為θ的函數(shù).
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系,求出S的最小值,并求出S取得最小值時(shí)AN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若集合P={x|1≤2x<8},Q={1,2,3},則P∩Q=( 。
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若0<x<1,則$\sqrt{(x-\frac{1}{x})^{2}+4}$-$\sqrt{(x+\frac{1}{x})^{2}-4}$等于2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式(x+2)${\;}^{-\frac{5}{3}}$>(1-2x)${\;}^{-\frac{5}{3}}$的解集為($-2,-\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果三點(diǎn)A(2m,$\frac{5}{2}$),B(4,-1),C (-4,-m)在同一條直線上,則常數(shù)m的值為$\frac{3±\sqrt{57}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)A={x|x2+(2a-3)x-3a=0},B={x|x2+(a-3)x+a2-3a=0},若A≠B,A∩B≠∅,試求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=25,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過曲線C上的一點(diǎn)Q(1,$\frac{8}{3}$)作兩條直線分別交曲線于A,B兩點(diǎn),已知QA,QB的斜率互為相反數(shù),求直線AB的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案