【題目】已知直線和.
(1)若,求實數(shù)的值;
(2)若,求實數(shù)的值.
【答案】(1);(2).
【解析】
(1)借助兩直線垂直的充要條件建立方程求解;(2)借助兩直線平行充要條件建立方程求解.
(1)若,則.
(2)若,則或2.
經(jīng)檢驗,時,與重合,時,符合條件,∴.
【點晴】
解析幾何是運用代數(shù)的方法和知識解決幾何問題一門學(xué)科,是數(shù)形結(jié)合的典范,也是高中數(shù)學(xué)的重要內(nèi)容和高考的熱點內(nèi)容.解答本題時充分運用和借助題設(shè)條件中的垂直和平行條件,建立了含參數(shù)的直線的方程,然后再運用已知條件進行分析求解,從而將問題進行轉(zhuǎn)化和化歸,進而使問題獲解.如本題的第一問中求參數(shù)的值時,是直接運用垂直的充要條件建立方程,這是方程思想的運用;再如第二問中求參數(shù)的值時也是運用了兩直線平行的條件,但要注意的是這個條件不是兩直線平行的充要條件,所以一定代回進行檢驗,這也是學(xué)生經(jīng)常會出現(xiàn)錯誤的地方.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,令函數(shù),若函數(shù)的部分圖象如圖所示,且點的坐標為.
(1)求點的坐標;
(2)求函數(shù)的單調(diào)增區(qū)間及對稱軸方程;
(3)若把方程的正實根從小到大依次排列為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)a、b滿足:a>0,b>0.
(1)若x∈R,求證:|x+a|+|x﹣b|≥2 .
(2)若a+b=1,求證: + + ≥12.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知,,動點滿足,設(shè)動點的軌跡為曲線.
(1)求動點的軌跡方程,并說明曲線是什么圖形;
(2)過點的直線與曲線交于兩點,若,求直線的方程;
(3)設(shè)是直線上的點,過點作曲線的切線,切點為,設(shè),求證:過三點的圓必過定點,并求出所有定點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點,C是橢圓E上的一點,直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點,且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】校運動會高二理三個班級的3名同學(xué)報名參加鉛球、跳高、三級跳遠3個運動項目,每名同學(xué)都可以從3個運動項目中隨機選擇一個,且每個人的選擇相互獨立.
(1)求3名同學(xué)恰好選擇了2個不同運動項目的概率;
(Ⅱ)設(shè)選擇跳高的人數(shù)為試求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓: ,點.
(1)求經(jīng)過點且與圓相切的直線的方程;
(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com