分析 (Ⅰ)由α,β的范圍求出α-β的范圍,由題意和平方關(guān)系求出sinα和cos(α-β),由兩角和的余弦公式求出cos(2α-β)=cos[(α-β)+α]的值;
(Ⅱ)由兩角差的余弦公式求出cosβ=cos[α-(α-β)]的值,再由β的范圍求出β的值.
解答 解:(Ⅰ)解:∵$α,β∈(0,\frac{π}{2})$,∴α-β∈($-\frac{π}{2}$,$\frac{π}{2}$),
∵$cosα=\frac{\sqrt{5}}{5}$,$sin(α-β)=\frac{\sqrt{10}}{10}$,
∴sinα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{5}}{5}$,cos(α-β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{3\sqrt{10}}{10}$,
∴cos(2α-β)=cos[(α-β)+α]=cos(α-β)cosα-sin(α-β)sinα
=$\frac{3\sqrt{10}}{10}$×$\frac{\sqrt{5}}{5}$-$\frac{\sqrt{10}}{10}$×$\frac{2\sqrt{5}}{5}$=$\frac{\sqrt{2}}{10}$,
(Ⅱ)由(Ⅰ)得,
cosβ=cos[α-(α-β)]=cos(α-β)cosα+sin(α-β)sinα
=$\frac{\sqrt{5}}{5}$×$\frac{3\sqrt{10}}{10}$+$\frac{2\sqrt{5}}{5}$×$\frac{\sqrt{10}}{10}$=$\frac{\sqrt{2}}{2}$,
又∵$β∈(0,\frac{π}{2})$,∴β=$\frac{π}{4}$.
點(diǎn)評(píng) 本題考查兩角和與差的余弦公式,同角三角函數(shù)的基本關(guān)系的應(yīng)用,注意角之間的關(guān)系以及三角函數(shù)值的符號(hào),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,1] | B. | [$\root{4}{2}$,+∞) | C. | [-2,1]∪[$\root{4}{2}$,+∞) | D. | [0,1]∪[$\root{4}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
廣告費(fèi)用x(萬元) | 1 | 2 | 3 | 4 | 5 |
銷售額y(萬元) | 10 | 12 | 15 | 18 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com