分析 (Ⅰ)化簡條件可得tanα=-$\sqrt{3}$,求得α的值,可得tan2α 的值.
(Ⅱ)利用三角恒等變換化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的值域求得它的最大值.
解答 解:(Ⅰ)∵sin($α+\frac{π}{3}$)=$\frac{1}{2}$cos($α-\frac{π}{6}$),∴2sinαcos$\frac{π}{3}$+2cosαsin$\frac{π}{3}$=cosαcos$\frac{π}{6}$+sinαsin$\frac{π}{6}$,
化簡可得sinα+$\sqrt{3}$cosα=0,即tanα=-$\sqrt{3}$.
又α是三角形的一個(gè)內(nèi)角,可得α=$\frac{2π}{3}$,故tan2α=tan$\frac{4π}{3}$=tan$\frac{π}{3}$=$\sqrt{3}$.
(Ⅱ)求函數(shù)f(x)=4sinxcosxcos2α+cos2xsin2α-1=2sin2xcos$\frac{4π}{3}$+cos2xsin$\frac{4π}{3}$-1
=-sin2x-$\frac{\sqrt{3}}{2}$cos2x-1=-$\frac{\sqrt{7}}{2}$sin(2x+θ)-1,故當(dāng)sin(2x+θ)=-1時(shí),f(x)取得最大值為$\frac{\sqrt{7}}{2}$-1.
點(diǎn)評 本題主要考查三角恒等變換,根據(jù)三角函數(shù)的值求角,正弦函數(shù)的值域,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
學(xué)生的編號(hào)i | 1 | 2 | 3 | 4 | 5 |
數(shù)學(xué)成績x | 80 | 75 | 70 | 65 | 60 |
物理成績y | 70 | 66 | 68 | 64 | 62 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | sin156°<0 | B. | $tan(-\frac{11}{6}π)>0$ | C. | sin1480°<0 | D. | cos(-250°)>0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com