分析 (1)求出f(x)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),由點(diǎn)斜式方程可得切線的方程;
(2)求出導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間,由極值的定義,可得極值.
解答 解:(1)函數(shù)f(x)=x-2lnx的導(dǎo)數(shù)為f′(x)=1-$\frac{2}{x}$,
即有在點(diǎn)A(1,f(1))處的切線斜率為k=1-2=-1,切點(diǎn)為(1,1),
則曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程為y-1=-(x-1),
即為y=2-x;
(2)函數(shù)f(x)=x-2lnx的導(dǎo)數(shù)為f′(x)=1-$\frac{2}{x}$=$\frac{x-2}{x}$,x>0,
當(dāng)x>2時,f′(x)>0,f(x)遞增;當(dāng)0<x<2時,f′(x)<0,f(x)遞減.
即有f(x)的增區(qū)間為(2,+∞),減區(qū)間為(0,2);
x=2處,f(x)取得極小值,且為2-2ln2,無極大值.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)區(qū)間、極值,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{1}{2}$|sinx| | B. | $y=\frac{1}{2}cos(2x+\frac{π}{2})$ | C. | y=tanx | D. | y=cos$\frac{1}{3}$x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$](k∈Z) | B. | [2kπ+$\frac{π}{3}$,2kπ+$\frac{5π}{6}$](k∈Z) | ||
C. | [kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z) | D. | [kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | ±$\sqrt{2}$ | C. | ±$\frac{\sqrt{2}}{2}$ | D. | ±$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com