16.若函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$) 滿足f(x)≤f($\frac{π}{3}$),則函數(shù)f(x)的單調(diào)遞增區(qū)間是( 。
A.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$](k∈Z)B.[2kπ+$\frac{π}{3}$,2kπ+$\frac{5π}{6}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z)

分析 由f(x)≤f($\frac{π}{3}$),對(duì)x∈R恒成立,結(jié)合函數(shù)最值的定義,求得f($\frac{π}{3}$)等于函數(shù)的最大值,由此可以確定滿足條件的初相角φ的值,然后根據(jù)正弦型函數(shù)單調(diào)區(qū)間的求法,即可得到答案.

解答 解:若f(x)≤f($\frac{π}{3}$),對(duì)x∈R恒成立,則f($\frac{π}{3}$)等于函數(shù)的最大值,
即2×$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
則φ=2kπ-$\frac{π}{6}$,k∈Z,
又|φ|<$\frac{π}{2}$,
∴φ=-$\frac{π}{6}$,
令2x-$\frac{π}{6}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,
解得x∈[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z).
則f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z).
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)y=Asin(ωx+φ)的圖象變換、三角函數(shù)的單調(diào)性,其中解答本題的關(guān)鍵是根據(jù)已知條件求出滿足條件的初相角φ的值.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系中,以0為極點(diǎn),x軸正半軸為極軸,建立極坐際系.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}+\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$ (t為參數(shù)),圓0的極坐際方程為p=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(1)將直線l與圓0的方程化為直角坐標(biāo)方程,并證明直線l過(guò)定點(diǎn)P($\frac{1}{2}$,1);
(2)設(shè)直線1與圓0相交于A,B兩點(diǎn),求證:點(diǎn)P到A,B兩點(diǎn)的距離之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p:“?x∈[0,1],a≥ex”;命題q:“?x0∈R,x${\;}_{0}^{2}$+4x0+a=0”.若命題“p∧q”是假命題,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,4]B.(-∞,1)∪(4,+∞)C.(-∞,e)∪(4,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)變量x,y滿足|x-1|+|y-a|≤1,若2x+y的最大值是5,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.命題“?x0∈R,2x0≤0”的否定是(  )
A.不存在x0∈R,2x0>0B.?x0∈R,2x0≤0
C.?x∈R,2x≤0D.?x∈R,2x>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知m∈R,命題P:對(duì)任意x∈[-1,1],不等式m2-3m-x+1≤0恒成立;命題q:存在x∈[-1,1],使得m-ax≤0成立.
(Ⅰ)當(dāng)a=1,p且q為假,p或q為真時(shí),求m的取值范圍;
(Ⅱ)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x-2lnx.
(1)求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值和單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知直線mx+ny+1=0平行于直線4x+3y+5=0,且在y軸上的截距為$\frac{1}{3}$,則m+n的值為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知A(-1,0)和圓x2+y2=2上動(dòng)點(diǎn)P,動(dòng)點(diǎn)M滿足2$\overrightarrow{MA}$=$\overrightarrow{AP}$,則點(diǎn)M的軌跡方程是(  )
A.(x-3)2+y2=1B.(x+$\frac{3}{2}$)2+y2=1C.(x+$\frac{3}{2}$)2+y2=$\frac{1}{2}$D.x2+(y+$\frac{3}{2}$)2=$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案