9.有兩個等差數(shù)列{an}和{bn},若$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{_{1}+_{2}+…_{n}}$=$\frac{4n+6}{n+7}$(n∈N*),則$\frac{{a}_{3}+{a}_{6}+{a}_{9}+{a}_{14}}{_{3}+_{6}+_{7}+_{11}+_{13}}$的值為( 。
A.$\frac{152}{75}$B.$\frac{14}{9}$C.$\frac{12}{5}$D.$\frac{3}{2}$

分析 設等差數(shù)列{an}和{bn}的前n項和分別為Sn,Tn,由已知得,$\frac{{S}_{n}}{{T}_{n}}=\frac{4n+6}{n+7}$,求出$\frac{{a}_{8}}{_{8}}$,再由等差數(shù)列的通項公式及性質(zhì)可得$\frac{{a}_{3}+{a}_{6}+{a}_{9}+{a}_{14}}{_{3}+_{6}+_{7}+_{11}+_{13}}$=$\frac{4}{5}\frac{{a}_{8}}{_{8}}$求得答案.

解答 解:設等差數(shù)列{an}和{bn}的前n項和分別為Sn,Tn,
由$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{_{1}+_{2}+…_{n}}$=$\frac{4n+6}{n+7}$(n∈N*),得$\frac{{S}_{n}}{{T}_{n}}=\frac{4n+6}{n+7}$,
∴$\frac{{a}_{8}}{_{8}}=\frac{15{a}_{8}}{15_{8}}=\frac{{S}_{15}}{{T}_{15}}=\frac{4×15+6}{15+7}=\frac{66}{22}=3$,
則$\frac{{a}_{3}+{a}_{6}+{a}_{9}+{a}_{14}}{_{3}+_{6}+_{7}+_{11}+_{13}}$=$\frac{4{a}_{1}+28y5sx2tr_{1}}{5_{1}+35qvsgbck_{2}}=\frac{4}{5}\frac{{a}_{8}}{_{8}}=\frac{4}{5}×3=\frac{12}{5}$.
故選:C.

點評 本題考查等差數(shù)列的通項公式,考查了等差數(shù)列的性質(zhì),體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=6cos2$\frac{ωx}{2}$+$\sqrt{3}$sinωx-3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形,則ω=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={x|log2x<1},B={x||x|≤2,x∈Z},則A∩B=( 。
A.{-2,-1,0,1}B.{-1,0,1}C.{0,1}D.{1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知cos2α=$\frac{4}{5}$,α∈($\frac{7π}{4}$,2π),求sin4α,sin($\frac{3π}{2}$-α)和tan$\frac{α}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設f(x)=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}},x∈[-1,1)}\\{{x}^{2}-1,x∈[1,2]}\end{array}\right.$,則${∫}_{-1}^{2}$f(x)dx的值為( 。
A.$\frac{π}{2}$+$\frac{4}{3}$B.$\frac{π}{2}$+3C.$\frac{π}{4}$+$\frac{4}{3}$D.$\frac{π}{4}$+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知cos(π+α)=$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設整數(shù)m是從不等式x2-2x-8≤0的整數(shù)解的集合S中隨機抽取的一個元素,記隨機變量X=m2,則P(1<X<10)等于( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{3}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知三次函數(shù)f(x)=x3+ax2+bx+c在y軸上的截距是2,且在(-∞,-1),(2,+∞)上單調(diào)遞增,在(-1,2)上單調(diào)遞減.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)h(x)=$\frac{f′(x)}{3(x-2)}$-(m+1)ln(x+m),求h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.函數(shù)f(x)=2sinx+cos2x的最小正周期是2π,值域是[-2,2].

查看答案和解析>>

同步練習冊答案