19.如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上的一點(diǎn),$\widehat{AE}$=$\widehat{AC}$,DE交AB于點(diǎn)F.
(1)求證:PF•PO=PA•PB;
(2)若PD=4,PB=2,DF=$\frac{20}{7}$,求弦CD的弦心距.

分析 (1)先證明△PDF∽△POC,再利用割線定理,即可證得結(jié)論;
(2)設(shè)圓的半徑為r,由△PDF∽△POC,可得半徑為5,由切割線定理可得,PD•PC=PB•PA•解得CD=2,再由垂徑定理和勾股定理,計(jì)算可得弦CD的弦心距.

解答 解:(1)證明:連接OC、OE,則∠COE=2∠CDE,
∵$\widehat{AE}$=$\widehat{AC}$,∴∠AOC=∠AOE,
∴∠AOC=∠CDE,
∴∠COP=∠PDF,
∵∠P=∠P,
∴△PDF∽△POC
∴$\frac{PD}{PO}$=$\frac{PF}{PC}$,
∴PF•PO=PD•PC,
由割線定理可得PC•PD=PA•PB,
∴PF•PO=PA•PB.
(2)設(shè)圓的半徑為r,PD=4,PB=2,DF=$\frac{20}{7}$,
由△PDF∽△POC,可得$\frac{PD}{PO}$=$\frac{DF}{OC}$,
即有PD•OC=PO•DF,
即4r=$\frac{20}{7}$(2+r),解得r=5.
由切割線定理可得,PD•PC=PB•PA•
即為4(4+CD)=2(2+2r),
即有CD=r-3=5-3=2,
則弦CD的弦心距為OH=$\sqrt{O{C}^{2}-(\frac{1}{2}CD)^{2}}$=$\sqrt{{5}^{2}-{1}^{2}}$=2$\sqrt{6}$.

點(diǎn)評(píng) 本題考查三角形相似,考查切割線定理的運(yùn)用,考查學(xué)生分析解決問題的能力以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以坐標(biāo)原點(diǎn)O為極點(diǎn),O軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=2(sinθ+cosθ+$\frac{1}{ρ}$).
(1)寫出曲線C的參數(shù)方程;
(2)在曲線C上任取一點(diǎn)P,過點(diǎn)P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖,圓O的半徑為1,A,B,C是圓周上的三點(diǎn),過點(diǎn)A作圓O的切線與OC的延長(zhǎng)線交于點(diǎn)P,若CP=AC,則∠COA=$\frac{π}{3}$;AP=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四邊形ABCD內(nèi)接于⊙O,過點(diǎn)A作⊙O的切線EP交CB的延長(zhǎng)線于P,∠PAB=35°.
(1)若BC是⊙O的直徑,求∠D的大小;
(2)若∠PAB=35°,求證:$\frac{D{A}^{2}}{A{P}^{2}}$=$\frac{DC}{PC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合,若曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+2cosα}\\{y=2sinα}\end{array}\right.$(α是參數(shù)),直線l的極坐標(biāo)方程為$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1.
(1)將曲線C的參數(shù)方程化為極坐標(biāo)方程;
(2)由直線l上一點(diǎn)向曲線C引切線,求切線長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.觀察如圖所示幾何體,其中判斷正確的是( 。

A.①是棱臺(tái)B.②是圓臺(tái)C.③是棱錐D.④不是棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中點(diǎn),AC,BD交于O點(diǎn),求二面角Q-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在[0,$\frac{π}{2}$]上的曲線y=sinx繞x軸旋轉(zhuǎn)一周所得圖形的體積為( 。
A.$\frac{{π}^{2}}{4}$B.$\frac{{π}^{2}}{a}$C.$\frac{{π}^{2}}{2}$D.π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=1-cos2x+2$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x,x∈R
(1)求f(x)的最小正周期和值域;
(2)若x0(0≤x0≤$\frac{π}{2}$)為f(x)的一個(gè)零點(diǎn),求sin2x0的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案