3.為了了解1201名學(xué)生對學(xué)校某項教改試驗的意見,打算從中抽取一個容量為60的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為20.

分析 由1201除以60不是整數(shù),先隨機(jī)的去掉1個人,再除以60,能求出分段的間隔k.

解答 解:了解1201名學(xué)生對學(xué)校某項教改試驗的意見,
打算從中抽取一個容量為60的樣本,
∵1201除以60不是整數(shù),
∴先隨機(jī)的去掉1個人,再除以60,
得到每一段有:1200÷60=20個人,
∴分段的間隔k=20.
故答案為:20.

點評 本題考查分段間隔的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意系統(tǒng)抽樣的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知sinα和cosα是方程x2-kx+k+1=0的兩根,且π<α<2π,求k,α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項和為Sn.且a1+2a23a3+…+nan=(n-1)Sn+2n(n∈N*).
(1)求a1,a2的值;
(2)求證:數(shù)列{Sn+2}是等比數(shù)列;
(3)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若z=1-i(i為虛數(shù)單位),則$\frac{\overline{z}}{z}$+z2的虛部為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.三個數(shù)為$a={log_3}0.2,b={3^{0.2}},c={0.2^3}$,則a,b,c的大小關(guān)系為( 。
A.a>c>bB.a<b<cC.a<c<bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實數(shù)a,b滿足不等式log2a<log3b,則不可能成立的是(  )
A.0<b<a<1B.0<a<b<1C.1<a<bD.1<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列四對函數(shù)中,f(x)與g(x)是同一函數(shù)的是(  )
A.$f(x)=\sqrt{x+1}\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$B.$f(x)=\frac{{{x^2}-1}}{x-1}$,g(x)=x+1
C.f(x)=ln(1-x)+ln(1+x),g(x)=ln(1-x2D.f(x)=lgx2,g(x)=2lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$與雙曲線${C_2}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1$的離心率分別為e1和e2,則$\frac{1}{e_1^2}+\frac{1}{e_2^2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四個結(jié)論:①設(shè)$\overrightarrow{a},\overrightarrow$為向量,若$|\overrightarrow{a}•\overrightarrow|=|\overrightarrow{a}||\overrightarrow|$,則$\overrightarrow{a}∥\overrightarrow$恒成立;
②命題“若x-sinx=0,則x=0”的逆命題為“若x≠0,則x-sinx≠0”;
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
其中正確結(jié)論的個數(shù)是( 。
A.1個B.2個C.3個D.0個

查看答案和解析>>

同步練習(xí)冊答案