精英家教網 > 高中數學 > 題目詳情
拋物線方程為ax+y2=0(a≠0),則準線方程為
 
考點:拋物線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:拋物線方程化為標準方程可得
p
2
=|
a
4
|,即可得到準線方程.
解答: 解:∵拋物線方程為ax+y2=0的標準方程為y2=-ax,∴
p
2
=|
a
4
|.
∴拋物線準線方程為x=
a
4

故答案:x=
a
4
點評:熟練掌握拋物線的標準方程及其性質是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若不等式|x-1|+|x-3|≤a2+a解集非空,則實數a的取值范圍為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足a1=4,an+1an+6an+1-4an-8=0,記bn=
6
an-2

(1)求數列{bn}的通項公式;
(2)求數列{an•bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
9
-
y2
16
=1的左、右焦點分別為F1、F2,點P在雙曲線的右支上,且|PF1|•|PF2|=32,則∠F1PF2=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0),F1,F2為雙曲線的左右焦點,若在雙曲線的右焦點上存在一點P,使得|PF1|=3|PF2|,則雙曲線的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a,b,c分別是較A、B、C對邊的長,且滿足
cosB
cosC
=-
b
2a+c

(1)求角B的值;
(2)若b=
19
,a+c=5.求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列函數中,最小值是4的函數的序號是
 

 ①y=x+
4
x
;②y=sinx+
4
sinx
;③y=2ex+2e-x;④y=logx3+4log3x(0<x<1).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足a1=1,an+1=2an+1(n∈N+),
(1)令bn=an+1,求證:數列{bn}是等比數列;
(2)求an的表達式.

查看答案和解析>>

科目:高中數學 來源: 題型:

若不等式ax2-ax+1≤0解集為空集,則實數a的取值范圍是( 。
A、(0,4)
B、[0,4)
C、(0,4]
D、[0,4]

查看答案和解析>>

同步練習冊答案