7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-1),$\overrightarrow{s}$=x$\overrightarrow{a}$+y$\overrightarrow$,若隨機(jī)取一個(gè)實(shí)數(shù)對(duì)(x,y),滿足x>0,y>0且x+y=2,使得|$\overrightarrow{s}$|≤$\sqrt{15}$的概率為$\frac{\sqrt{2}}{2}$.

分析 根據(jù)向量的坐標(biāo)運(yùn)算和向量的數(shù)量積和向量的模得到x2+y2≤3,再求出AB,CD的長(zhǎng)度,根據(jù)幾何概率公式計(jì)算即可.

解答 解:∵向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-1),$\overrightarrow{s}$=x$\overrightarrow{a}$+y$\overrightarrow$,
∴|$\overrightarrow{s}$|2=|x$\overrightarrow{a}$+y$\overrightarrow$|2=|x$\overrightarrow{a}$|2+|y$\overrightarrow$|2+2xy$\overrightarrow{a}•\overrightarrow$=5x2+5y2≤15,
∴x2+y2≤3,
 對(duì)于x+y=2,
當(dāng)x=0時(shí),y=2,當(dāng)y=0時(shí),x=2,
∴AB=2$\sqrt{2}$,
由$\left\{\begin{array}{l}{x+y=2}\\{{x}^{2}+{y}^{2}=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{1}=\frac{2+\sqrt{2}}{2}}\\{{y}_{1}=\frac{2-\sqrt{2}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{{x}_{2}=\frac{2-\sqrt{2}}{2}}\\{{y}_{2}=\frac{2+\sqrt{2}}{2}}\end{array}\right.$,
∴CD=$\sqrt{({x}_{2}-{x}_{1})^{2}+({y}_{2}-{y}_{1})^{2}}$=2,
∴滿足x>0,y>0且x+y=2,使得|$\overrightarrow{s}$|≤$\sqrt{15}$的概率為$\frac{2}{2\sqrt{2}}$=$\frac{\sqrt{2}}{2}$
故答案為:$\frac{\sqrt{2}}{2}$

點(diǎn)評(píng) 本題借助向量的數(shù)量積和向量的模以及圓和直線的位置關(guān)系點(diǎn)與點(diǎn)的距離考查了幾何概型概率,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.一個(gè)盒子中裝有5張編號(hào)依次為1,2,3,4,5的卡片,這5張卡片除號(hào)碼外完全相同,現(xiàn)進(jìn)行有放回的連續(xù)抽取兩次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求條件“取出卡片的號(hào)碼之和不小于7或小于5”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.一個(gè)骰子(六個(gè)面分別標(biāo)有1,2,3,4,5,6的玩具)連續(xù)擲2次,向上點(diǎn)數(shù)和為3的概率$\frac{1}{18}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.將函數(shù)y=3sinx的圖象向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)( 。
A.在區(qū)間[$\frac{π}{2}$,$\frac{3π}{2}$]上單調(diào)遞減B.在區(qū)間[0,$\frac{3π}{2}$]上單調(diào)增
C.在區(qū)間[0,π]上單調(diào)遞減D.在區(qū)間[0,π]上單調(diào)增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知sin($\frac{3π}{2}$-x)=$\frac{5}{13}$,則cos(π-x)=( 。
A.-$\frac{5}{13}$B.$\frac{5}{13}$C.$\frac{12}{13}$D.-$\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)P(x0,4)是C上一點(diǎn),且|PF|=4.
(1)求點(diǎn)P的坐標(biāo)和拋物線C的方程.
(2)拋物線C上異于點(diǎn)P的兩點(diǎn)A(x1,y1)、B(x2,y2),若直線PA與直線PB的傾斜角互補(bǔ),求證直線AB的斜率kAB的值等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,|$\overrightarrow{AB}$|=c,|$\overrightarrow{AC}$|=b.
(Ⅰ)若b=3,c=5,sinA=$\frac{4}{5}$,求|$\overrightarrow{BC}$|;
(Ⅱ)若|$\overrightarrow{BC}$|=2,$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為$\frac{π}{3}$,則當(dāng)|$\overrightarrow{AB}$|取到最大值時(shí),求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知集合{(x,y)|$\left\{\begin{array}{l}{2x+y-4≤0}\\{x+y≥0}\\{x-y≥0}\end{array}\right.$}表示的平面區(qū)域?yàn)棣,若在區(qū)域Ω內(nèi)任取一點(diǎn)P(x,y),則點(diǎn)P的坐標(biāo)滿足不等式x2+y2≤3的概率為$\frac{9}{64}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.長(zhǎng)方體ABCD-A1B1C1D1中,AB=4,AD=3,AA1=2,點(diǎn)P在棱BB1上,則AP+PC1的最小值為$\sqrt{53}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案