【題目】盒子里裝有4張卡片,上面分別寫著數(shù)字1,1,2,2,每張卡片被取到的概率相等.先從盒子中任取1張卡片,記下上面的數(shù)字,然后放回盒子內(nèi)攪勻,再從盒子中隨機任取1張卡片,記下它上面的數(shù)字.
(1)求的概率;
(2)設(shè)“函數(shù)在區(qū)間內(nèi)有且只有一個零點”為事件,求的概率.
【答案】(1).(2)
【解析】
(1)利用列表法和古典概型的概率公式可求得結(jié)果;
(2)因為的值只能取,,,分別當(dāng)取2,3,4時,求出函數(shù)的零點,可知只有符合要求,然后求出的概率即可得到答案.
(1)先后兩次取到卡片的情況如下表:
共有16種情況. 滿足的共有4種情況.
所以的概率.
(2)因為的值只能取,,,
當(dāng)時,無解,所以沒有零點,不符合要求.
當(dāng)時,由,解得或,
的零點分別為,,所以在區(qū)間內(nèi)只有這個零點,符合要求.
當(dāng)時,由,解得或,
所以的零點分別為,,都不在區(qū)間內(nèi),不符合要求.
所以事件相當(dāng)于,
由(1)知:滿足的共有8種情況,所以.
即函數(shù)函數(shù)在區(qū)間內(nèi)有且只有一個零點的概率等于.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南充高中扎實推進陽光體育運動,積極引導(dǎo)學(xué)生走向操場,走進大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學(xué)生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:
分組 | ||||||
男生人數(shù) | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數(shù) | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學(xué)生稱為“鍛煉達人”.
(1)將頻率視為概率,估計我校7000名學(xué)生中“鍛煉達人”有多少?
(2)從這100名學(xué)生的“鍛煉達人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將寬和長都分別為x,的兩個矩形部分重疊放在一起后形成的正十字形面積為注:正十字形指的是原來的兩個矩形的頂點都在同一個圓上,且兩矩形長所在的直線互相垂直的圖形,
求y關(guān)于x的函數(shù)解析式;
當(dāng)x,y取何值時,該正十字形的外接圓面積最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司新上一條生產(chǎn)線,為保證新的生產(chǎn)線正常工作,需對該生產(chǎn)線進行檢測,現(xiàn)從該生產(chǎn)線上隨機抽取100件產(chǎn)品,測量產(chǎn)品數(shù)據(jù),用統(tǒng)計方法得到樣本的平均數(shù),標(biāo)準(zhǔn)差,繪制如圖所示的頻率分布直方圖,以頻率值作為概率估值.
(1)從該生產(chǎn)線加工的產(chǎn)品中任意抽取一件,記其數(shù)據(jù)為X,依據(jù)以下不等式評判(P表示對應(yīng)事件的概率)
①
②
③
評判規(guī)則為:若至少滿足以上兩個不等式,則生產(chǎn)狀況為優(yōu),無需檢修;否則需檢修生產(chǎn)線,試判斷該生產(chǎn)線是否需要檢修;
(2)將數(shù)據(jù)不在內(nèi)的產(chǎn)品視為次品,從該生產(chǎn)線加工的產(chǎn)品中任意抽取2件,次品數(shù)記為Y,求Y的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù)).
(1)證明:①當(dāng)時,;
②當(dāng)時,.
(2)是否存在最大的整數(shù),使得函數(shù)在其定義域上是增函數(shù)?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右頂點,離心率為,為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知(異于點)為橢圓上一個動點,過作線段的垂線交橢圓于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線上縱坐標(biāo)為的點到焦點的距離為2.
(Ⅰ)求的值;
(Ⅱ)如圖,為拋物線上三點,且線段與軸交點的橫坐標(biāo)依次組成公差為1的等差數(shù)列,若的面積是面積的,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個極值點,且,求證;
(3)設(shè),對于任意時,總存在,使成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com