分析 由題意,畫出圖形,建立直角坐標(biāo)系.設(shè)∠OAB=θ,則∠CBE=θ.θ∈(0,$\frac{π}{2}$).可得B(0,2sinθ),C(sinθ,cosθ+2sinθ).|OC|2=sin2θ+(cosθ+2sinθ)2=2$\sqrt{2}$sin(2θ$-\frac{π}{4}$)+3,利用θ的范圍結(jié)合正弦函數(shù)的有界性求OC的最大值時(shí)θ的大小,即可得出∠ABO的大。
解答 解:如圖所示,
建立直角坐標(biāo)系.
設(shè)∠OAB=θ,則∠CBE=θ.θ∈(0,$\frac{π}{2}$).
B(0,2sinθ),C(sinθ,cosθ+2sinθ).
∴|OC|2=sin2θ+(cosθ+2sinθ)2
=1+4sinθcosθ+4sin2θ
=1+2sin2θ+2(1-cos2θ)
=2$\sqrt{2}$sin(2θ$-\frac{π}{4}$)+3,
∵θ∈(0,$\frac{π}{2}$),∴(θ-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$).
∴當(dāng)2θ-$\frac{π}{4}$=$\frac{π}{2}$,即θ=$\frac{3π}{8}$時(shí),|OC|2取得最大值是2$\sqrt{2}$+3;
∴此時(shí)∠ABO的大小為$\frac{π}{8}$;
故答案為:$\frac{π}{8}$.
點(diǎn)評 本題考查了兩點(diǎn)之間的距離公式、點(diǎn)的坐標(biāo)、兩角和差的正弦公式、倍角公式、三角函數(shù)的單調(diào)性與值域,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\widehat{y}$=x-1 | B. | $\widehat{y}$=2x+1 | C. | $\widehat{y}$=x+2 | D. | $\widehat{y}$=x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5.2 | B. | 6.6 | C. | 7.1 | D. | 8.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}$<$\frac{1}$ | B. | ab<b2 | C. | ac2<bc2 | D. | a2>ab>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com