2.已知x=a+b,y=a-b,求(x3+y32-(x3-y32的值.

分析 利用乘法公式化簡即可得出.

解答 解:(x3+y32-(x3-y32=(x3+y3+x3-y3)(x3+y3-x3+y3
=2x3×2y3=4(a+b)3(a-b)3=4(a2-b23

點(diǎn)評 本題考查了乘法公式的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,PA⊥BC,平面PACD為直角梯形,∠PAC=90°,PD∥AC,PA=AB=PD=1,AC=2,∠BAC=120°
(1)求證:PA⊥AB;
(2)求直線BD與平面PACD所成角的正弦值;
(3)求二面角D-BC-A的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)y=f(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f′(x),f′(x)在區(qū)間(a,b)上的導(dǎo)函數(shù)為f″(x),若在區(qū)間(a,b)上,f″(x)恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”.例如函數(shù)f(x)=lnx在任意正實(shí)數(shù)區(qū)間(a,b)上都是凸函數(shù).現(xiàn)給出如下命題:
①區(qū)間(a,b)上的凸函數(shù)f(x)在其圖象上任意一點(diǎn)(x,f(x))處的切線的斜率隨x的增大而減;
②若函數(shù)f(x),g(x)都是區(qū)間(a,b)上的凸函數(shù),則函數(shù)y=f(x)g(x)也是區(qū)間(a,b)上的凸函數(shù);
③若在區(qū)間(a,b)上,f″(x)<0恒成立,則?x1,x2∈(a,b),x1≠x2,都有f($\frac{{{x_1}+{x_2}}}{2}$)>$\frac{{f({x_1})+f({x_2})}}{2}$;
④對滿足|m|≤1的任意實(shí)數(shù)m,若函數(shù)f(x)=$\frac{1}{12}$x4-$\frac{1}{6}$mx3-x2+mx-m在區(qū)間(a,b)上均為凸函數(shù),則b-a的最大值為2.
⑤已知函數(shù)f(x)=-$\frac{1}{x}$,x∈(1,2),則對任意實(shí)數(shù)x,x0∈(1,2),f(x)≤f(x0)+f′(x0)(x-x0)恒成立;
其中正確命題的序號是①③⑤.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.從2016年1月1日起,湖北、廣東等18個保監(jiān)局所轄地區(qū)將納入商業(yè)車險(xiǎn)改革試點(diǎn)范圍,其中最大的變化是上一年的出險(xiǎn)次數(shù)決定了下一年的保費(fèi)倍率,具體關(guān)系如下表:
上一年的出險(xiǎn)次數(shù)012345次以上(含5次)
下一年保費(fèi)倍率85%100%125%150%175%200%
連續(xù)兩年沒有出險(xiǎn)打7折,連續(xù)三年沒有出險(xiǎn)打6折
經(jīng)驗(yàn)表明新車商業(yè)車險(xiǎn)保費(fèi)與購車價(jià)格有較強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的8組數(shù)據(jù)(x,y)(其中x(萬元)表示購車價(jià)格,y(元)表示商業(yè)車險(xiǎn)保費(fèi)):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),設(shè)由這8組數(shù)據(jù)得到的回歸直線方程為:$\stackrel{∧}{y}$=$\stackrel{∧}$x+1055
(Ⅰ)求b;
(Ⅱ)有評估機(jī)構(gòu)從以往購買了車險(xiǎn)的車輛中隨機(jī)抽取1000 輛調(diào)查,得到一年中出險(xiǎn)次數(shù)的頻數(shù)分布如下(并用相應(yīng)頻率估計(jì)車輛2016 年度出險(xiǎn)次數(shù)的概率):
一年中出險(xiǎn)次數(shù)012345次以上(含5次)
頻數(shù)5003801001541
湖北的李先生于2016 年1月購買了一輛價(jià)值20 萬元的新車.根據(jù)以上信息,試估計(jì)該車輛在2017 年1月續(xù)保時應(yīng)繳交的保費(fèi)(精確到元),并分析車險(xiǎn)新政是否總體上減輕了車主負(fù)擔(dān).(假設(shè)車輛下一年與上一年都購買相同的商業(yè)車險(xiǎn)產(chǎn)品進(jìn)行續(xù)保).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)橢圓x2+$\frac{{y}^{2}}{m}$=1上恰有兩點(diǎn)到直線y=x+4的距離等于$\sqrt{2}$,則m的取值范圍為3<m<35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=3,∠BAC=60°,則|$\overrightarrow{BC}$|=( 。
A.1B.$\sqrt{7}$C.3D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.接正方體6個面的中心形成15條直線,從這15條直線中任取兩條,則它們異面的概率為( 。
A.$\frac{2}{35}$B.$\frac{8}{35}$C.$\frac{12}{35}$D.$\frac{18}{35}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.矩形ABCD滿足AB=2,AD=1,點(diǎn)A、B分別在射線OM,ON上運(yùn)動,∠MON為直角,當(dāng)C到點(diǎn)O的距離最大時,∠ABO的大小為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知線性回歸方程$\widehat{y}$=3x+0.3,則對應(yīng)于點(diǎn)(2,6.4)的殘差為0.1.

查看答案和解析>>

同步練習(xí)冊答案