2.已知{an}是一個等差數(shù)列,{an}的前n項和記為Sn,a1=4,S3=21
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足b1=$\frac{16}{7}$,bn+1-bn=2${\;}^{{a}_{n}}$,求數(shù)列{bn}的通項公式.

分析 (1)設數(shù)列{an}的公差為d,由已知得3×4+$\frac{3×2}{2}$•d=21,由此能求出數(shù)列{an}的通項公式.
(2)由bn+1-bn=2${\;}^{{a}_{n}}$=23n+1,由此利用疊加法能求出數(shù)列{bn}的通項公式.

解答 解:(1)設數(shù)列{an}的公差為d,由已知得3×4+$\frac{3×2}{2}$•d=21…(3分)
解得d=3…(4分),
{an}的通項公式為an=3n+1…(5分)
(2)由(1)得bn+1-bn=2${\;}^{{a}_{n}}$=23n+1…(6分)
當n≥2時,bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1,…(8分)
∴bn=23n-2+23n-5+…+24+$\frac{16}{7}$=$\frac{{2}^{4}[1-{2}^{3(n-1)}]}{1-{2}^{3}}$+$\frac{16}{7}$=$\frac{1}{7}$×23n+1(n≥2)…(11分)
∵b1=$\frac{16}{7}$滿足bn=$\frac{1}{7}$×23n+1,
∴bn=$\frac{1}{7}$×23n+1,n∈N+…(12分)

點評 本題考查數(shù)列的通項公式的求法,解題時要認真審題,注意迭代法和疊加法的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$在$\overrightarrow$上的正射影$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設a=20.3,b=30.2,c=70.1,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一個焦點與拋物線y2=4x的焦點重合,且雙曲線的實軸長是虛軸長的一半,則該雙曲線的方程為( 。
A.5x2-$\frac{5}{4}$y2=1B.$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{4}$=1D.5x2-$\frac{4}{5}$y2=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=sin2x-2cosx的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.經(jīng)過點(-4,3),且與原點的距離等于3的直線方程是24x+7y+75=0或y=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.用列表法表示函數(shù)f(x),g(x)如下:
x123
 f(x)131
x123
g(x)321
則滿足f[g(x)]<g[f(x)]的x的值為( 。
A.1或3B.3或2C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.sin45°cos105°+sin45°sin15°=(  )
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{e^x}-1\\ lnx\end{array}\right.$$\begin{array}{l}(x<1)\\(x≥1)\end{array}$,那么f(ln2)的值是(  )
A.0B.1C.ln(ln2)D.2

查看答案和解析>>

同步練習冊答案