4.如圖,在正方體ABCD-A1B1C1D1,若E是AD的中點(diǎn),則異面直線(xiàn)A1B與C1E所成角等于90°

分析 以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線(xiàn)A1B與C1E所成角.

解答 解:以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,
則A1(0,0,2),B(2,0,0),C1(2,2,2),E(0,1,0),
$\overrightarrow{{{A}_{1}B}^{\;}}$=(2,0,-2),$\overrightarrow{{C}_{1}E}$=(-2,-1,-2),
設(shè)異面直線(xiàn)A1B與C1E所成角為θ,
則cosθ=$\frac{|\overrightarrow{{A}_{1}B}•\overrightarrow{{C}_{1}E}|}{|\overrightarrow{{A}_{1}B}|•|\overrightarrow{{C}_{1}E}|}$=$\frac{|-4+4|}{\sqrt{8}•\sqrt{9}}$=0,
∴θ=90°.
∴異面直線(xiàn)A1B與C1E所成角等于90°.
故答案為:90°.

點(diǎn)評(píng) 本題考查異面直線(xiàn)所成角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知向量$\overrightarrow{m}$=(cosx,1-asinx),$\overrightarrow{n}$=(cosx,2),其中a∈R,x∈R,設(shè)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,且函數(shù)f(x)的最大值為g(a).
(I)求函數(shù)g(a)的解析式;
(Ⅱ)設(shè)0≤θ<2π,求函數(shù)g(2cosθ+1)的最大值和最小值以及對(duì)應(yīng)的θ值;
(Ⅲ)若對(duì)于任意的實(shí)數(shù)x∈R,g(x)≥kx+$\frac{5}{2}$恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)全集U=R,集合A={x|y=lgx},B={-1,1},則下列結(jié)論正確的是( 。
A.A∩B={-1}B.(∁RA)∪B=(-∞,0)C.A∪B=(0,+∞)D.(∁RA)∩B={-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(Ⅰ)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過(guò)點(diǎn)$(-2,-\sqrt{2})$的橢圓的標(biāo)準(zhǔn)方程
(Ⅱ)求與橢圓$\frac{x^2}{25}+\frac{y^2}{5}=1$共焦點(diǎn)且過(guò)點(diǎn)$(3\sqrt{2},2\sqrt{2})$的雙曲線(xiàn)的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.兩圓${C_1}:{x^2}+{y^2}-1=0$和${C_2}:{x^2}+{y^2}-4x-5=0$的位置關(guān)系是( 。
A.相交B.外離C.外切D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若$sinBsinC-cosBcosC=\frac{1}{2}$.
(Ⅰ)求角A;
(Ⅱ)若$a=2,b+c=2\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)$f(x)=\frac{x^2}{x-1},x∈({1,+∞})$的值域?yàn)閇4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知A=45°,cosB=$\frac{4}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)若BC=10,D為AB的中點(diǎn),求AB,CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.把函數(shù)y=sin3x的圖象向右平移$\frac{π}{4}$個(gè)長(zhǎng)度單位,所得曲線(xiàn)的對(duì)應(yīng)函數(shù)式( 。
A.y=sin(3x-$\frac{3π}{4}$)B.y=sin(3x+$\frac{π}{4}$)C.y=sin(3x-$\frac{π}{4}$)D.y=sin(3x+$\frac{3π}{4}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案