分析 以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線(xiàn)A1B與C1E所成角.
解答 解:以A為原點(diǎn),AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,
則A1(0,0,2),B(2,0,0),C1(2,2,2),E(0,1,0),
$\overrightarrow{{{A}_{1}B}^{\;}}$=(2,0,-2),$\overrightarrow{{C}_{1}E}$=(-2,-1,-2),
設(shè)異面直線(xiàn)A1B與C1E所成角為θ,
則cosθ=$\frac{|\overrightarrow{{A}_{1}B}•\overrightarrow{{C}_{1}E}|}{|\overrightarrow{{A}_{1}B}|•|\overrightarrow{{C}_{1}E}|}$=$\frac{|-4+4|}{\sqrt{8}•\sqrt{9}}$=0,
∴θ=90°.
∴異面直線(xiàn)A1B與C1E所成角等于90°.
故答案為:90°.
點(diǎn)評(píng) 本題考查異面直線(xiàn)所成角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A∩B={-1} | B. | (∁RA)∪B=(-∞,0) | C. | A∪B=(0,+∞) | D. | (∁RA)∩B={-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相交 | B. | 外離 | C. | 外切 | D. | 內(nèi)切 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin(3x-$\frac{3π}{4}$) | B. | y=sin(3x+$\frac{π}{4}$) | C. | y=sin(3x-$\frac{π}{4}$) | D. | y=sin(3x+$\frac{3π}{4}$) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com