14.將函數(shù)y=sinx,x∈R的圖象上所有點的橫坐標縮短為原來的一半,縱坐標不變,所得圖象對應的函數(shù)解析式為(  )
A.y=sin$\frac{1}{2}x$,x∈RB.y=sin2x,x∈RC.y=$\frac{1}{2}$sinx,x∈RD.y=2sinx,x∈R

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結論.

解答 解:將函數(shù)y=sinx,x∈R的圖象上所有點的橫坐標縮短為原來的一半,縱坐標不變,
所得圖象對應的函數(shù)解析式為y=sin2x的圖象,
故選:B.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=xn-lnx-1(n∈N*,n≥2).
(1)若n=2,求函數(shù)f(x)的極值;
(2)求證:①函數(shù)f(x)存在兩個零點x1,x2
②x1x2>e${\;}^{\frac{2}{n}-2}$(e為自然對數(shù)的底數(shù).)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.下列命題:
①在一個2×2列聯(lián)表中,由計算得k2=6.679,則有99%的把握確認這兩個變量間有關系.
②隨機變量X服從正態(tài)分布N(1,2),則P(X<0)=P(x>2);
③若二項式${({x+\frac{2}{x^2}})^n}$的展開式中所有項的系數(shù)之和為243,則展開式中x-4的系數(shù)是40
④連擲兩次骰子得到的點數(shù)分別為m,n,記向量$\overrightarrow{a}$=(m,n)與向量$\overrightarrow$=(1,-1)的夾角為θ,則θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
⑤若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=31;
其中正確命題的序號為①②④⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.對稱軸為坐標軸的橢圓與的焦點F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),P為橢圓上任意一點,滿足|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設不過原點O的直線l:y=kx+m與橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.對稱軸為坐標軸的橢圓與的焦點F1(-$\sqrt{3}$,0),F(xiàn)2( $\sqrt{3}$,0),P為橢圓上任意一點,滿足|PF1|+|PF2|=4.
(Ⅰ)求橢圓的方程;
(Ⅱ)設不過原點O的直線l:y=kx+$\frac{1}{2}$與橢圓交于P,Q兩點,滿足直線OP,PQ,OQ的斜率依次成等比數(shù)列,O到直線PQ的距離為$\frac{1}{\sqrt{5}}$,求S△OPQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且離心率為$\frac{\sqrt{3}}{3}$,M為橢圓上一點,△MF1F2的周長為2$\sqrt{3}$+2.
(1)求橢圓E的方程;
(2)若直線l過點F2,l與圓O:x2+y2=5相交于P,Q兩點,l與橢圓E相交于R,S兩點,若|PQ|∈[4,$\sqrt{19}$],求△F1RS的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,F(xiàn)1,F(xiàn)2是橢圓C的兩個焦點,P是C上任意一點,且△PF1F2的周長為8+4$\sqrt{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l與橢圓相交于不同的兩點A、B,已知點A的坐標為(-a,0),點Q(0,-3)在線段AB的垂直平分線上,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,且過點($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求橢圓方程;
(Ⅱ)設不過原點O的直線l:y=kx+m(k≠0),與該橢圓交于P、Q兩點,直線OP、OQ的斜率一次為k1、k2,滿足4k=k1+k2
(i)當k變化時,m2是否為定值?若是,求出此定值,并證明你的結論;若不是,請說明理由;
(ii)求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若數(shù)列{an}滿足:a1=1,an+1=2an(n∈N+),則其前7項的和S7=127.

查看答案和解析>>

同步練習冊答案