【題目】若三棱錐的三條側(cè)棱兩兩垂直,側(cè)棱長分別為1, ,2,且它的四個頂點在同一球面上,則此球的體積為(
A.
B.
C.
D.8π

【答案】C
【解析】解:三棱錐A﹣BCD中,以A為頂點的三條側(cè)棱兩兩垂直,且其長分別為1, ,2. ∵三棱錐的四個頂點同在一個球面上,三棱錐是長方體的一個角,則構(gòu)造長方體,
∴三棱錐的外接球與長方體的外接球相同,
即長方體的體對角線就是球的直徑,
∴長方體的體對角線長 =2
即球的直徑為2r=2 ,解得半徑為r= ,
∴外接球的體積為: π×( 3= π
故選:C.
根據(jù)三棱錐三條側(cè)棱兩兩垂直,三棱錐的四個頂點在同一個球面上,構(gòu)造長方體,根據(jù)長方體的體對角線和球直徑之間的關(guān)系即可求出球的半徑,即可求出球的體積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明1+2+3+…+n2= ,則當(dāng)n=k+1時左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某體育場要建造一個長方形游泳池,其容積為4800m3 , 深為3m,如果建造池壁的單價為a且建造池底的單價是建造池壁的1.5倍,怎樣設(shè)計水池的長和寬,才能使總造價最底?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于點F,且點F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐C﹣ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),關(guān)于的不等式只有1個整數(shù)解,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù), 1

1)若,曲線yfx)與x0處有相同的切線,求b;

2)若,求函數(shù)的單調(diào)遞增區(qū)間;

3)若對任意恒成立,求b的取值區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,其左焦點到點的距離為.不過原點的直線相交于兩點,且線段被直線平分.

1)求橢圓的方程;

2)求的面積取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(2)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.

查看答案和解析>>

同步練習(xí)冊答案