1.函數(shù)f(x)=x2-2ax+2,x∈[-1,1].
(1)討論f(x)在[-1,1]上的奇偶性;
(2)f(x)在[-1,1]上的最小值記為g(a),試寫出g(a)的函數(shù)表達(dá)式.

分析 (1)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
(2)先將函數(shù)配方,確定函數(shù)的對稱軸,再利用對稱軸與區(qū)間的位置關(guān)系,進(jìn)行分類討論,從而可求函數(shù)f(x)=x2-2ax+2在區(qū)間[-1,1]上的最小值.

解答 解:(1)若a=0,則f(x)=x2+2,
則f(-x)=f(x),即函數(shù)f(x)為偶函數(shù),
若a≠0,則f(1)=3-2a,f(-1)=3+2a,
則f(-1)≠-f(1)且f(-1)≠f(1),此時(shí)f(x)為非奇非偶函數(shù).
(2)f(x)=x2-2ax+2=(x-a)2+2-a2
①當(dāng)a<-1時(shí),函數(shù)在區(qū)間[-1,1]上單調(diào)增,
∴函數(shù)f(x)的最小值為g(a)=f(-1)=3+2a;
②當(dāng)-1≤a≤1時(shí),函數(shù)在區(qū)間[-1,a]上單調(diào)減,在區(qū)間[a,1]上單調(diào)增,
∴f(x)的最小值為g(a)=f(a)=2-a2;
③當(dāng)a>1時(shí),函數(shù)在區(qū)間[-1,1]上單調(diào)減,
∴f(x)的最小值為g(a)=f(1)=3-2a.
綜上可知,f(x)的最小值為g(a)=$\left\{\begin{array}{l}{3+2a,}&{a<-1}\\{2-{a}^{2},}&{-1≤a≤1}\\{3-2a,}&{a>1}\end{array}\right.$.

點(diǎn)評 本題重點(diǎn)考查二次函數(shù)在指定區(qū)間上的最值問題,解題的關(guān)鍵是正確配方,確定函數(shù)的對稱軸,利用對稱軸與區(qū)間的位置關(guān)系,進(jìn)行分類討論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(n)滿足f(n+1)=$\left\{\begin{array}{l}{2f(n),0≤f(n)<\frac{1}{2}}\\{2f(n)-1,\frac{1}{2}≤f(n)<1}\end{array}\right.$ 其中n∈N*.若f(1)=$\frac{6}{7}$,求 f(20)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列函數(shù):①f(x)=$\sqrt{-2{x}^{3}}$與g(x)=x$\sqrt{-2x}$;②f(x)=x0與g(x)=$\frac{1}{{x}^{0}}$;③f(x)=x2-2x-1與f(t)=t2-2t-1.其中表示同一函數(shù)的有②③(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)A={x|x≤-1或1<x<2},B={x|$\frac{x-a}{x-b}$≤0},已知A∩B={-3<x≤-1},A∪B={x|x<2},則a+b的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若一次函數(shù)f(x)滿足f(2)=1,f(3)=5,則f(x)的解析式為f(x)=4x-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)數(shù)列{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,a2=4,a1a4=32,數(shù)列{bn}滿足:對任意的正整數(shù)n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1+2.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若集合M={n|$\frac{_{n}_{n+1}}{{a}_{n}}$≥λ,n∈N*}中元素的個(gè)數(shù)為4,試求實(shí)數(shù)λ的取值范圍;
(3)將數(shù)列{an}與{bn}按a1,b1,a2,b2,a3,b3,…,an,bn,…的順序排好后,再刪去其中小于2015的項(xiàng),剩下的項(xiàng)按原來的順序構(gòu)成一個(gè)新數(shù)列{cn},試求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知單調(diào)遞增數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=$\frac{1}{2}$(a${\;}_{n}^{2}$+n).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)cn=$\left\{\begin{array}{l}{\frac{1}{{a}_{n+1}^{2}-1}}&{n為奇數(shù)}\\{3×{2}^{{a}_{n-1}}+1}&{n為偶數(shù)}\end{array}\right.$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tanα=2,則1+sin2α=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(log2x)2-2log${\;}_{\frac{1}{2}}$x+1,g(x)=x2-ax+1.
(1)求函數(shù)y=f(($\frac{1}{2}$)${\;}^{{x}^{2}-3x}$-4)的定義域;
(2)若存在a∈R,對任意x1∈[$\frac{1}{8}$,2],總存在唯一x0∈[-1,2],使得f(x1)=g(x0)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案