15.設(shè)$a={(\frac{1}{3})}^{\frac{1}{2}}$,b=${2}^{-\frac{1}{2}}$,c=lnπ,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

分析 利用冪函數(shù)的單調(diào)性,判斷a,b的大小,然后推出結(jié)果.

解答 解:$a={(\frac{1}{3})}^{\frac{1}{2}}$,b=${2}^{-\frac{1}{2}}$=${(\frac{1}{2})}^{\frac{1}{2}}$,因?yàn)閥=${x}^{\frac{1}{2}}$是增函數(shù),所以a<b,${(\frac{1}{2})}^{\frac{1}{2}}=\frac{\sqrt{2}}{2}<1$,所以b<1,
c=lnπ>lne=1,
可得a<b<c.
故選:A.

點(diǎn)評(píng) 本題考查指數(shù)函數(shù)的單調(diào)性的應(yīng)用,對(duì)數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x+b}{{1+{x^2}}}$是定義在(-1,1)上的奇函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)用單調(diào)性的定義證明函數(shù)f(x)在(-1,1)上是增函數(shù);
(3)解不等式 f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求下列函數(shù)的不定積分.
(1)∫$\frac{1}{\sqrt{x}+\sqrt{x+1}}$dx;
(2)∫$\frac{1}{(x-1)(x+2)}$dx.
(3)∫$\frac{{x}^{2}}{{a}^{2}+{x}^{2}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓O:x2+y2=1與圓C:x2+y2-6x-8y+m=0相切于M點(diǎn),求以M為圓心,且與圓C的半徑相等的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{lg({2x-1})}$,求函數(shù)的定義域,并判斷它的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知數(shù)列{an}是等差數(shù)列,公差d不為零,且a3+a9=a10-a8,則a5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=|x+1|+|2x-1|的最小值為a.
(1)求a的值;
(2)已知m,n>0,m+n=a,求$\frac{1}{m}+\frac{4}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求由參數(shù)方程x=${∫}_{0}^{t}$sinudu,y=${∫}_{0}^{t}$cosudu所確定的函數(shù)y=y(x)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知an=2n(n∈N+),則a1a2+a2a3+a3a4+…+anan+1=$\frac{4n(n+1)(n+2)}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案