A. | 16 | B. | 32 | C. | 64 | D. | 128 |
分析 由題意得Sn+2+Sn+1=2Sn,得an+2=-2an+1,從而得到{an}從第二項(xiàng)起是公比為-2的等比數(shù)列,由此能求出結(jié)果.
解答 解:∵數(shù)列{an}的前n項(xiàng)和為Sn,若Sn+1,Sn,Sn+2成等差數(shù)列,且a2=-2,
∴由題意得Sn+2+Sn+1=2Sn,得an+2+an+1+an+1=0,即an+2=-2an+1,
∴{an}從第二項(xiàng)起是公比為-2的等比數(shù)列,
∴${a_7}={a_2}{q^5}=64$.
故選:C.
點(diǎn)評(píng) 本題考查等差數(shù)列的第十項(xiàng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,3) | B. | [1,2log23+2) | C. | [2,3) | D. | [2,2log23+2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4i | B. | -4i | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com