8.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-2y+2≥0\\ x-y≤0\end{array}\right.$,則z=2x-y的最大值為( 。
A.-2B.-1C.2D.1

分析 先畫出滿足條件的平面區(qū)域,由z=2x-y得:y=2x-z,顯然直線過A(2,2)時,z取得最大值,代入求出即可.

解答 解:畫出滿足條件的平面區(qū)域,
如圖示:
,
由$\left\{\begin{array}{l}{x-2y+2=0}\\{x-y=0}\end{array}\right.$,解得:A(2,2),
由z=2x-y得:y=2x-z,
由圖知,直線過A(2,2)時,z取得最大值,
∴z的最大值是2,
故選:C.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\frac{{\sqrt{x}}}{3}+\frac{{\sqrt{y}}}{4}$=1,則xy的最大值是( 。
A.3B.4C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知tanθ=2,則sinθcosθ=( 。
A.$\frac{3}{5}$B.$\frac{2}{5}$C.±$\frac{2}{5}$D.±$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}滿足an+1=qan+2q-2(q為常數(shù)),若a3,a4,a5∈{-5,-2,-1,7},則a1=-2或-$\frac{17}{9}$或79.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.遼寧號航母紀(jì)念章從2012年10月5日起開始上市.通過市場調(diào)查,得到該紀(jì)念章每1枚的市場價y(單位:元)與上市時間x(單位:天)的數(shù)據(jù)如下:
上市時間x天41036
市場價y元905190
已知遼寧號航母紀(jì)念章的市場價y與上市時間x的變化關(guān)系是f(x)=ax2+bx+c.
(1)求遼寧號航母紀(jì)念章市場價最低時的上市天數(shù)及最低的價格;
(2)若對任意實數(shù)k,關(guān)于x的方程f(x)=kx+2m+120在實數(shù)集上恒有兩個相異的實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax2-(a2+1)x+a.
(1)若當(dāng)a>0時f(x)<0在x∈(1,2)上恒成立,求a范圍
(2)解不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,是偶函數(shù)且在(0,+∞)上為減函數(shù)的是( 。
A.y=x2B.y=x3C.y=x-2D.y=x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知圓C經(jīng)過A(0,2),O(0,0),D(t,0)(t>0)三點,M是線段AD上的動點,l1,l2是過點B(1,0)且互相垂直的兩條直線,其中l(wèi)1交y軸于點E,l2交圓C于P、Q兩點.
(1)若t=|PQ|=6,求直線l2的方程;
(2)若t是使|AM|≤2|BM|恒成立的最小正整數(shù),求三角形EPQ的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A={x|x2≤1},B={x|x2-2x>0},求A∩B,A∪B.

查看答案和解析>>

同步練習(xí)冊答案