20.下列函數(shù)中,是偶函數(shù)且在(0,+∞)上為減函數(shù)的是( 。
A.y=x2B.y=x3C.y=x-2D.y=x-3

分析 逐一判斷四個函數(shù)的單調(diào)性與奇偶性,從而得到答案.

解答 解:∵y=x2為偶函數(shù),在(0,+∞)遞增,
∴A不滿足題意;
∵y=x3為奇函數(shù),在(0,+∞)上是增函數(shù),
∵B不滿足題意;
∵y=x-2為偶函數(shù),且在(0,+∞)上單調(diào)遞減,
∴C滿足題意;
∵y=x-3不是偶函數(shù),∴D不滿足題意.
故選C.

點評 本題主要考查了函數(shù)單調(diào)性及奇偶性的判斷,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}中a1=2,a2=1,an+2=$\left\{\begin{array}{l}{\frac{2{a}_{n+1}}{{a}_{n}},{a}_{n+1}≥2}\\{\frac{4}{{a}_{n}},{a}_{n+1}<2}\end{array}\right.$(n∈N*),Sn是數(shù)列{an}的前n項和,則S2015=5239.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知關(guān)于x的方程x2-2ax+2a2-3a+2=0有兩個不等的實數(shù)根x1,x2,那么(x1-x22的取值范圍是(  )
A.(0,+∞)B.[0,1]C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-2y+2≥0\\ x-y≤0\end{array}\right.$,則z=2x-y的最大值為(  )
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U={1,2,3,4,5,6,7},A={1,3,5},B={2,4,5,7},則集合∁U(A∪B)為( 。
A.{1,2,3,4,6,7}B.{1,2,5}C.{3,5,7}D.{6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)是定義在R上的偶函數(shù),已知x≥0時,f(x)=x2-2x
(1)求函數(shù)y=f(x)的解析式;
(2)畫出f(x)的圖象的草圖,并由圖象直接寫出函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)函數(shù)y=f(x)-K恰有4個零點時,直接寫出K的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是奇函數(shù),且當(dāng)x≥0時,f(x)=x(1+x),則f(-2)=( 。
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x+a|+|x-2|
(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[0,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f(x)=$\root{3}{2x+4}$,則f(2)=(  )
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊答案