7.已知函數(shù)f(x)=4-x2
(1)試判斷函數(shù)f(x)的奇偶性并說明理由;
(2)用定義證明函數(shù)f(x)在[0,+∞)是減函數(shù).

分析 (1)先求出函數(shù)的定義域,求出f(-x),判斷出f(-x)與f(x)的關(guān)系,利用奇函數(shù)偶函數(shù)的定義判斷出f(x)的奇偶性;
(2)設(shè)出定義域中的兩個自變量,求出兩個函數(shù)值的差,將差變形,判斷出差的符號,據(jù)函數(shù)單調(diào)性的定義判斷出函數(shù)的單調(diào)性.

解答 解:(1)f(x)的定義域為R,
又∵f(-x)=[4-(-x)2]=4-x2=f(x),
∴f(x)在R內(nèi)是偶函數(shù).
(2)設(shè)x1,x2∈R,0<x1<x2
∵f(x1)-f(x2)=(4-x12)-(4-x22)=x22-x12=(x2+x1)(x2-x1
又x1,x2∈R,0<x1<x2,
∴(x2+x1)>0,(x2-x1)>0
∵f(x1)-f(x2)>0,
所以函數(shù)f(x)在[0,+∞)是減函數(shù).

點評 判斷函數(shù)的奇偶性應(yīng)該先求出函數(shù)的定義域,判斷定義域是否關(guān)于原點對稱,若不對稱則函數(shù)不具有奇偶性,若對稱,再檢驗f(-x)與f(x)的關(guān)系;利用單調(diào)性的定義判斷函數(shù)的單調(diào)性一定要將函數(shù)值的差變形到能判斷出符號為止.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x、y為銳角,$tanx=\frac{4}{7}$,$siny=\frac{{\sqrt{10}}}{10}$,求tan(x+2y)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在四面體ABCD中,已知$\overrightarrow{AB}$=$\overrightarrow b$,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow c$,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{EC}$,則$\overrightarrow{DE}$等于$\frac{1}{3}\overrightarrow{c}$-$\overrightarrow{a}$+$\frac{2}{3}\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為迎接2016年到來,某手工作坊的師傅要制作一種“新年禮品”,制作此禮品的次品率P與日產(chǎn)量x(件)滿足P=$\left\{\begin{array}{l}{\frac{1}{20-x}}&{(0<x≤c)}\\{\frac{4}{5}}&{(x>c)}\end{array}\right.$(c為常數(shù),且c∈N*,c<20),且每制作一件正品盈利4元,每出現(xiàn)一件次品虧損1元.
(Ⅰ)將日盈利額y(元)表示為日產(chǎn)量x(件)的函數(shù);
(Ⅱ)為使日盈利額最大,日制作量應(yīng)為多少件?(注:次品率=$\frac{次品數(shù)}{產(chǎn)品總數(shù)}$×100%)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右焦點分別為F1、F2,過點F1作傾斜角為$\frac{π}{3}$的直線交橢圓于A、B兩點,求:
(1)弦AB的長
(2)△F2AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若鈍角△ABC的面積為10$\sqrt{3}$,且AB=5,AC=8,則BC等于$\sqrt{129}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)f(x)=x2lnx,g(x)=ax3-x2
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求實數(shù)a的取值范圍;
(3)若使方程f(x)-g(x)=0在x∈[e${\;}^{-\frac{1}{3}}$,en](其中e=2.7…為自然對數(shù)的底數(shù))上有解的最小a的值為an,數(shù)列{an}的前n項和為Sn,求證:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某公司將進(jìn)貨單價為8元一個的商品按10元一個出售,每天可以賣出100個,若這種商品的售價每個上漲1元,則銷售量就減少10個.
(1)求售價為13元時每天的銷售利潤;
(2)求售價定為多少元時,每天的銷售利潤最大,并求最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x、y>0,且$\frac{1}{x}+\frac{2}{y}=1$,則x+2y的最小值為9.

查看答案和解析>>

同步練習(xí)冊答案