11.已知矩陣A=$[\begin{array}{l}{1}&{0}\\{1}&{1}\end{array}]$,B=$[\begin{array}{l}{0}&{2}\\{3}&{2}\end{array}]$.
(1)求滿足條件AM=B的矩陣M;
(2)矩陣M對應(yīng)的變換將曲線C:x2+y2=1變換為曲線C′,求曲線C′的方程.

分析 (1)利用待定系數(shù)法,求滿足條件AM=B的矩陣M;
(2)建立曲線C上任意一點P(x,y)在矩陣M對應(yīng)的變換作用下變?yōu)辄cP′(x′,y′)的關(guān)系,將點P(x,y)的坐標(biāo)代入圓的方程即可求出.

解答 解:(1)設(shè)M=$[\begin{array}{l}{a}&\\{c}&n3wslmb\end{array}]$,
AM=$[\begin{array}{l}{1}&{0}\\{1}&{1}\end{array}]$$[\begin{array}{l}{a}&\\{c}&osgft7r\end{array}]$=$[\begin{array}{l}{a}&\\{a+c}&{b+d}\end{array}]$=$[\begin{array}{l}{0}&{2}\\{3}&{2}\end{array}]$,
得a=0,b=2,c=3,d=0.
∴M=$[\begin{array}{l}{0}&{2}\\{3}&{0}\end{array}]$.
(2)設(shè)曲線C上任意一點P(x,y)在矩陣M對應(yīng)的變換作用下變?yōu)辄cP′(x′,y′),
則M$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{0}&{2}\\{3}&{2}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{2y}\\{3x}\end{array}]$=$[\begin{array}{l}{x′}\\{y′}\end{array}]$,
∴2y=x′,3x=y′
即y=$\frac{x′}{2}$,x=$\frac{y′}{3}$
代入曲線C:x2+y2=1,得($\frac{x′}{2}$)2+($\frac{y′}{3}$)2=1.
∴曲線C′的方程是$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1.

點評 本題主要考查矩陣與變換、曲線在矩陣變換下的曲線的方程,考查運(yùn)算求解能力及化歸與轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線方程為$y=±\frac{{\sqrt{3}}}{2}x$,則C的離心率為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{7}}}{2}$C.$\sqrt{7}$D.$\frac{{\sqrt{21}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=3S2+2,a2n=2an
(1)求等差數(shù)列{an}的通項公式an
(2)令bn=$\frac{2n+1}{(n+1)^{2}{{a}_{n}}^{2}}$,數(shù)列{bn}的前n項和為Tn.證明:對任意n∈N*,都有$\frac{3}{16}$≤Tn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.t>0,關(guān)于x的方程|x|+$\sqrt{t-{x}^{2}}$=$\sqrt{2}$的解為集合A,則A中元素個數(shù)可能為0,2,3,4(寫出所有可能).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=4x,過x軸上的一定點Q(a,0)的直線l交拋物線C于A、B兩點(a為大于零的正常數(shù)).
(1)設(shè)O為坐標(biāo)原點,求△ABO面積的最小值;
(2)若點M為直線x=-a上任意一點,探求:直線MA,MQ,MB的斜率是否成等差數(shù)列?若是,則給出證明;若不是,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.公差不為0的等差數(shù)列{an}的首項為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ) 證明:對一切正整數(shù)n,有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,圓錐的頂點為P,底面圓為O,底面的一條直徑為AB,C為半圓弧$\widehat{AB}$的中點,E為劣弧$\widehat{CB}$的中點,已知PO=2,OA=1,求三棱錐P-AOC的體積,并求異面直線PA和OE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河南商丘第一高級中學(xué)年高三上理開學(xué)摸底數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在直三棱柱中,,過的中點作平面的垂線,交平面,則與平面所成角的正切值為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解不等式:x2-2x-3≥0.

查看答案和解析>>

同步練習(xí)冊答案