10.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且3bsinA=2$\sqrt{3}$asinC.
(1)若A+3C=π,求sinB的值;
(2)若c=3,△ABC的面積為3$\sqrt{2}$,求a.

分析 (1)由三角形內(nèi)角和為π,得B=2C,由正弦定理得到sinB.
(2)由三角形的面積公式以及余弦定理得到a的值.

解答 解:(1)在△ABC中,∵A+3C=π,∴B=2C,
∵3bsinA=2$\sqrt{3}$asinC.得:$\frac{2\sqrt{3}}{3}$=$\frac{2sinCcosC}{sinC}$,
∴cosC=$\frac{\sqrt{3}}{3}$,sinC=$\frac{\sqrt{6}}{3}$,
∴sinB=sin2C=$\frac{2\sqrt{2}}{3}$.
(2)∵3bsinA=2$\sqrt{3}$asinC.
∴$\frac{c}$=$\frac{2\sqrt{3}}{3}$,
∵c=3,△ABC的面積S=$\frac{1}{2}$bcsinA=3$\sqrt{2}$,
∴sinA=$\frac{\sqrt{6}}{3}$,cosA=±$\frac{\sqrt{3}}{3}$,
∴a2=b2+c2-2bccosA,
∴a2=9或33,
∴a=3或$\sqrt{33}$.

點(diǎn)評(píng) 本題考查正弦定理和三角形的面積公式以及余弦定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\sqrt{3}$sinx+3cosx+1(x∈[π,2π])的單調(diào)遞增區(qū)間是[$\frac{7π}{6}$.2π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計(jì)資料預(yù)測(cè),今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18,(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺(tái)大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下兩種方案:
方案1:建一保護(hù)圍墻,需花費(fèi)1000元,但圍墻只能抵御一個(gè)河流發(fā)生的洪水,當(dāng)兩河流同時(shí)發(fā)生洪水時(shí),設(shè)備仍將受損,損失約56000元;
方案2:不采取措施,此時(shí),當(dāng)兩條河流都發(fā)生洪水時(shí)損失為60000元,只有一條河流發(fā)生洪水時(shí),損失為10000元.
(Ⅰ)試求方案2中損失費(fèi)ξ(隨機(jī)變量)的分布列及期望;
(Ⅱ)試比較哪一種方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,且AD∥BC,∠BAD=90°,PA=AB,M,N分別為PC,PB的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:PN⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)α為銳角,若cos(α+$\frac{π}{6}$)=$\frac{3}{5}$,則cos(2α-$\frac{π}{6}$)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,a1=-1,且n(an+1-an)=2-an+1(n∈N*),現(xiàn)給出下列4個(gè)結(jié)論:
①數(shù)列{an}是遞增數(shù)列;
②數(shù)列{an}是遞減數(shù)列;
③存在n∈N*,使得(2-a1)+(2-a2)+…+(2-an)>2016;
④存在n∈N*,使得(2-a12+(2-a22+…+(2-an2>2016;
其中正確的結(jié)論的序號(hào)是②③(請(qǐng)寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a∈R,“函數(shù)y=3x+a-1有零點(diǎn)”是“函數(shù)y=logax在(0,+∞)上為減函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=$\frac{1}{2}$sin2x-cos2(x+$\frac{π}{4}$).
(1)若x∈(0,π),求f(x)的單調(diào)遞增區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f($\frac{B}{2}$)=0,b=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤2x}\\{y≥\frac{1}{2}x}\\{x≤k}\end{array}\right.$,且目標(biāo)函數(shù)z=2x+y的最大值為3,則k=$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案