3.如圖,四棱錐S-ABCD中,BC⊥CD,AB∥平面SCD,又SD⊥平面SAB,且AB=BC=2,CD=SD=1.
(1)證明:CD⊥SD;
(2)求四棱錐S-ABCD的體積.

分析 (1)利用平行線中的一條直線與令一條直線垂直,推出另一條直線垂直證明CD⊥SD;
(2)利用VS-ABCD:VS-ABD=SABCD:S△ABD,求出VS-ABD,即可求四棱錐S-ABCD的體積.

解答 (1)證明:由SD⊥面SAB,AB?面SAB,
所以SD⊥AB,又AB∥CD,
所以CD⊥SD;
(2)解:VS-ABCD:VS-ABD=SABCD:S△ABD=3:2,
過D作DH⊥AB,交于H,由題意得,BD=AD=$\sqrt{1+4}$=$\sqrt{5}$,
在Rt△DSA,Rt△DSB中,SA=SB=$\sqrt{5-1}$=2.
所以,VS-ABD=VD-SAB=$\frac{1}{3}$DS•S△ABS=$\frac{\sqrt{3}}{3}$,
四棱錐S-ABCD的體積為:$\frac{3}{2}×\frac{\sqrt{3}}{3}$=$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查直線與直線垂直,幾何體的體積的求法,考查空間想象能力,計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知正三棱錐P-ABC,若M是側(cè)棱PA的三分點(diǎn),且PB⊥CM,AB=$\sqrt{2}$,則三棱錐P-ABC外接球的體積為( 。
A.2$\sqrt{3}π$B.$\frac{π}{2}$C.$\frac{\sqrt{3}}{2}π$D.$\frac{\sqrt{3}}{4}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C經(jīng)過點(diǎn)A(2,3)、B(4,0),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1、F2在x軸上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求∠F1AF2的角平分線所在的直線l與橢圓C的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,短軸的一個(gè)端點(diǎn)為M,直線l:3x-4y=0交橢圓C于A,B兩點(diǎn),若|AF|+|BF|=4,點(diǎn)M到直線l的距離等于$\frac{4}{5}$,則橢圓C的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,焦距為6,則該橢圓的方程是( 。
A.$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$B.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{27}=1$C.$\frac{{x}^{2}}{36}+\frac{{y}^{2}}{9}=1$D.$\frac{{y}^{2}}{36}+\frac{{x}^{2}}{27}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C與兩平行直線x-y=0及x-y-4=0都相切,且圓心C在直線x+y=0上,
(1)求圓C的方程;
(2)若直線l:y=kx-2與圓C恒有兩個(gè)不同的交點(diǎn)A和B,且$\overrightarrow{OA}•\overrightarrow{OB}>2$(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.f(x)=cos3x,則$f'({\frac{π}{18}})$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若拋物線x2=2py(p>0)的焦點(diǎn)在圓x2+y2+2x-1=0上,則這條拋物線的準(zhǔn)線方程為y=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1共焦點(diǎn),它們的離心率之和為$\frac{14}{5}$,雙曲線的方程應(yīng)是( 。
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1C.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1D.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案