4.已知(x+2)15=a0+a1(1-x)+a2(1-x)2+…+a15(1-x)15,則a13的值為(  )
A.945B.-945C.1024D.-1024

分析 根據(jù)題意,化(x+2)15=-[(1-x)-3]15,利用[(1-x)-3]15展開式的通項公式,即可求出a13的值.

解答 解:∵(x+2)15=[(x-1)+3]15=-[(1-x)-3]15=a0+a1(1-x)+a2(1-x)2+…+a15(1-x)15,
且[(1-x)-3]15展開式的通項公式為Tr+1=${C}_{15}^{r}$•(1-x)15-r•(-3)r,
令15-r=13,解得r=2;
∴${C}_{15}^{13}$•(-3)2=$\frac{15×14}{2}$×9=945,
∴a13=945.
故選:A.

點評 本題考查了二項式定理的應(yīng)用問題,也考查了轉(zhuǎn)化思想的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$ (α為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸的正半軸為極軸)中,直線l的方程為ρ(cosθ-sinθ)+1=0
(1)寫出曲線C的和直線l的普通方程;
(2)若l與x軸的交點為P,與曲線C的交點為A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\frac{{x}^{2}+3}{|x-1|}$,g(x)=1+kcosx,則f(x)的值域是[2,+∞),若對任意的x1,x2∈R,均有f(x1)≥g(x2),則實數(shù)k的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知tan($\frac{π}{6}$-$\frac{α}{2}$)=6,則cosα+$\sqrt{3}$sinα=-$\frac{70}{37}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)敬列{an}的前n項和為Sn,已知a1=4,an+1=Sn+3n,n∈N*
(Ⅰ)設(shè)bn=Sn-3n,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{2{x}^{2}}{{e}^{x}}$+$\frac{mx}{{e}^{x}}$,m∈R.
(1)若f(x)在x=0處取得極值,確定m的值,并求此時曲線y=f(x)在點(2,f(2))處的切線方程;
(2)若f(x)在[2,+∞)上為減函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知z∈C,則|z一4|+|z+3i|的最小值是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等差數(shù)列{an}中,解答下列問題:
(1)已知a1+a2+a3=12,與a4+a5+a6=18,求a7+a8+a9的值;
(2)設(shè)a3=1012與an=3112且d=70,求項數(shù)n的值;
(3)若a1=1且an+1-an=$\frac{1}{2}$,求a11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}滿足a1+a3=8,a2+a4=12.
(Ⅰ)求數(shù)列{an}的前n項和為Sn
(Ⅱ)若$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{999}{1000}$,求n的值.

查看答案和解析>>

同步練習(xí)冊答案