分析 (Ⅰ)通過代入計算可得b1、a2的值,利用等比數(shù)列的通項公式即得an=2n-1;通過a1a2…an=${2}^{_{n}-n}$,利用指數(shù)冪的運算性質即得bn=$\frac{n(n+1)}{2}$;
(Ⅱ)通過an=2n-1,bn=$\frac{n(n+1)}{2}$可得cn=$(\frac{1}{2})^{n-1}$+2($\frac{1}{n}$-$\frac{1}{n+1}$),計算即得結論.
解答 解:(Ⅰ)有題意可知:a1=${2}^{_{1}-1}$,
∵a1=1,∴b1=1,∴b2=1+2=3,
又∵a1a2=${2}^{_{2}-2}$,∴a2=2,
∵{an}為等比數(shù)列,
∴公比q=2,∴an=2n-1;
又∵a1a2…an=${2}^{_{n}-n}$,
∴20•21•22•…•2n-1=${2}^{_{n}-n}$,
∴bn=n+[0+1+2+3+…+(n-1)]=$\frac{n(n+1)}{2}$;
(Ⅱ)∵an=2n-1,bn=$\frac{n(n+1)}{2}$,
∴cn=$\frac{1}{{a}_{n}}+\frac{1}{_{n}}$=$(\frac{1}{2})^{n-1}$+$\frac{2}{n(n+1)}$=$(\frac{1}{2})^{n-1}$+2($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=c1+c2+…+cn
=[1+$\frac{1}{2}$+…+$(\frac{1}{2})^{n-1}$]+2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$+2(1-$\frac{1}{n+1}$)
=2-$(\frac{1}{2})^{n-1}$+2-$\frac{2}{n+1}$
=4-$\frac{2}{n+1}$-$\frac{1}{{2}^{n-1}}$.
點評 本題考查求數(shù)列的通項及前n項和,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$或$\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A∩B=(3,5) | B. | A∪B=5 | C. | A∪B={x|x≤5} | D. | A∩B={4} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com