分析 首先根據(jù)所給的橢圓的方程寫出橢圓的長軸的長,兩個(gè)焦點(diǎn)之間的距離,根據(jù)正弦定理得到角的正弦值之比就等于邊長之比,把邊長代入,得到比值.
解答 解:橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{11}$=1的a=6,c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{36-11}$=5,
△ABC的頂點(diǎn)A(-5,0),C(5,0),即為橢圓的兩焦點(diǎn),
由橢圓定義可得,AB+CB=2a=12,
又AC=10,
由正弦定理知$\frac{sinA+sinC}{sinB}$=$\frac{BC+AB}{AC}$=$\frac{12}{10}$=$\frac{6}{5}$,
故答案為:$\frac{6}{5}$.
點(diǎn)評(píng) 本題考查橢圓的性質(zhì)和正弦定理的應(yīng)用,解題的關(guān)鍵是把角的正弦值之比寫成邊長之比,進(jìn)而和橢圓的參數(shù)結(jié)合起來,需注意特殊點(diǎn)的“巧合”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com