16.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ,θ∈[0,2π).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)在曲線C上求一點D,使它到直線l:$\left\{\begin{array}{l}{x=\sqrt{3}t+\sqrt{3}}\\{y=-3t+2}\end{array}\right.$(t為參數(shù),t∈R)的距離最短,并求出點D的直角坐標(biāo).

分析 (I)極坐標(biāo)方程兩邊同乘ρ,得出曲線C的直角坐標(biāo)方程;
(II)求出直線l的普通方程和取出C的參數(shù)方程,代入點到直線的距離公式,根據(jù)三角函數(shù)的性質(zhì)求出距離最小值,得出對應(yīng)的D點坐標(biāo).

解答 解:(I)∵ρ=2sinθ,∴ρ2=2ρsinθ,
∴曲線C的直角坐標(biāo)方程為x2+y2=2y.
(II)直線l的普通方程為$\sqrt{3}$x+y-5=0.
曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)).
∴設(shè)D(cosα,1+sinα).
則D到直線l的距離d=$\frac{|\sqrt{3}cosα+sinα-4|}{2}$=2-sin($α+\frac{π}{3}$).
∴當(dāng)α=$\frac{π}{6}$時,d取得最小值1.
此時D點坐標(biāo)為($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

點評 本題考查了極坐標(biāo)方程與直角坐標(biāo)的方程,參數(shù)的幾何意義及應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{5,(0≤x≤1)}\\{f(x-1)+3,(x>1)}\end{array}\right.$.
(1)求f(2),f(5)的值;
(2)當(dāng)x∈N*時,f(1),f(2),f(3),f(4),…構(gòu)成一數(shù)列,求其通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a,b,c,d均為正數(shù),且ad=bc
(Ⅰ)證明:若a+d>b+c,則|a-d|>|b-c|;
(Ⅱ)t•$\sqrt{{a}^{2}+^{2}}$$\sqrt{{c}^{2}+kowe0q2^{2}}$=$\sqrt{{a}^{4}+{c}^{4}}$+$\sqrt{^{4}+ayueqgk^{4}}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.我校舉行環(huán)保知識大獎賽,比賽分初賽和決賽兩部分,初賽采用選一題答一題的方式進行.每位選手最多有5次答題機會.選手累計答對3題或答錯三題終止初賽的比賽.答對三題直接進入決賽,答錯3題則被淘汰.已知選手甲連續(xù)兩次答錯的概率為$\frac{1}{9}$(已知甲回答每個問題的正確率相同,并且相互之間沒有影響)
(1)求選手甲回答一個問題的正確率;
(2)求選手甲進入決賽的概率;
(3)設(shè)選手甲在初賽中答題個數(shù)為X,試寫出X的分布列,并求甲在初賽中平均答題個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,a1=3,${a_{n+1}}={a_n}^2-n{a_n}+α,n∈{N^*},α∈R$.
(1)若an≥2n對?n∈N*都成立,求α的取值范圍;
(2)當(dāng)α=-2時,證明$\frac{1}{{{a_1}-2}}+\frac{1}{{{a_2}-2}}+…+\frac{1}{{{a_n}-2}}<2(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.(1)已知點$A(-\frac{1}{2},0)$,點B是圓$F:{(x-\frac{1}{2})^2}+{y^2}=4$上一動點,線段AB的垂直平分線交BF于點P,則動點P的軌跡方程為${x^2}+\frac{{4{y^2}}}{3}=1$
(2)在平面直角坐標(biāo)系中,A,B分別為x軸和y軸上的動點,若以AB為直徑的圓C與直線2x+y-4=0相切,則動圓圓心C的軌跡為拋物線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖是某幾何體的三視圖,則該幾何體的其全面積為72,其外接球的半徑為$\frac{{5\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A、B、C、D、E五所高校舉行自主招生考試,某同學(xué)決定按A、B、C、D、E的順序參加考試.假設(shè)該同學(xué)參加每所高校的考試獲得通過的概率為$\frac{1}{3}$.
(1)如果該同學(xué)五所高校的考試都參加,求在恰有兩所通過的條件下,不是連續(xù)兩所通過的概率;
(2)如果該同學(xué)一旦通過某所高校的考試,就不再參加后面高校的考試,假設(shè)參加每所高?荚囁璧馁M用均為162元,試求該同學(xué)參加考試所需費用X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.每逢節(jié)假日,在微信好友群發(fā)紅包逐漸成為一種時尚,還能增進彼此的感情.2016年春節(jié)期間,小魯在自己的微信好友群中,向在線的甲、乙、丙、丁四位好友隨機發(fā)放紅包,發(fā)放的規(guī)則為:每次發(fā)放一個,每個人搶到的概率相同.
(1)若小魯隨機發(fā)放了3個紅包,求甲至少搶到一個紅包的概率;
(2)若丁因有事暫時離線一段時間,而小魯在這段時間內(nèi)共發(fā)放了3個紅包,其中2個紅包中各有10元,一個紅包中有5元,記這段時間內(nèi)乙所得紅包的總錢數(shù)為X元,求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案