已知b,c∈R,f(x)=x2+bx+c,對(duì)任意α,β∈R,都有f(sinα)≥0,f(2+cosβ)≤0
(1)求f(1)的值;
(2)證明:c≥3;
(3)設(shè)f(sinα)的最大值10,求f(x).
考點(diǎn):函數(shù)與方程的綜合運(yùn)用,二次函數(shù)的性質(zhì)
專題:綜合題,三角函數(shù)的求值
分析:(1)由sinα,sinβ的有界性以及f(sinα)≥0,f(2+sinβ)≤0;可以求出f(1)的值;
(2)由二次函數(shù)f(x)的對(duì)稱軸以及f(1)的值,可以證出c≥3;
(3)由題意,判定f(-1)是f(x)在[-1,1]的最大值;又由(1)知f(1)的值;由此求出b、c的值,即得f(x)的表達(dá)式.
解答: 解:(1)∵-1≤sinα≤1,1≤2+sinβ≤3,
且對(duì)任意α,β∈R都有f(sinα)≥0,f(2+sinβ)≤0;
∴對(duì)x∈[-1,1]時(shí),f(x)≥0,對(duì)x∈[1,3]時(shí),f(x)≤0;
∴f(1)=0.                                                      
(2)∵對(duì)x∈[-1,1]時(shí),f(x)≥0,對(duì)x∈[1,3]時(shí),f(x)≤0,
∴二次函數(shù)f(x)的對(duì)稱軸滿足:x=-
b
2
≥2,
∴b≤4;
由(1)知,f(1)=0,
∴1+b+c=0,
∴c=-b-1≥4-1=3.
(3)∵f(sinα)的最大值為10,
∴f(x)在[-1,1]的最大值為10;
又∵二次函數(shù)f(x)圖象開口向上且對(duì)稱軸:x=-
b
2
≥2,
∴f(x)在[-1,1]上單調(diào)遞減,
∴f(-1)=10,
∴1-b+c=10①;
又由(1)知,f(1)=0,
∴1+b+c=0②;
聯(lián)立①②,解得b=-5,c=4,
∴f(x)的表達(dá)式為f(x)=x2-5x+4.
點(diǎn)評(píng):本題結(jié)合三角函數(shù)的知識(shí)考查了二次函數(shù)的性質(zhì)與應(yīng)用問題,是綜合性題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,已知梯形ABCD,AB∥CD,且CD=2AB,E是CD邊上的中點(diǎn),線段AE與BD交于點(diǎn)F.將△ADE沿AE翻折到△AD′E位置,連接D′B和D′C(如圖2).

(Ⅰ)直線BC上是否存在一點(diǎn)G,使EG∥平面BD′F,并說明理由;
(Ⅱ)若AD=BC=AB=2,平面AD′E⊥平面ABCE,求三棱錐C-BD′E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖①,△ABC是等腰直角三角形,AC=BC=4,∠ACB=90°,E,F(xiàn)分別是AC,AB的中點(diǎn),將△AEF折起,使點(diǎn)A到達(dá)A′位置,且A′在平面BCEF上的射影恰為點(diǎn)E,如圖②.

(1)求證EF⊥A′C;
(2)求點(diǎn)F到平面A′BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第三象限角,且f(α)=
sin(5π-a)•cos(a+
2
)•cos(π+a)
sin(a-
2
)•cos(a+
π
2
)•tan(a-3π)

(1)化簡f(α);
(2)已知cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

近日我漁船編隊(duì)在釣魚島附近點(diǎn)A周圍海域作業(yè),在B處的海監(jiān)15船測得A在其南偏東45°方向上,測得漁政船310在其北偏東15°方向上,且與B的距離為4
3
海里的C處.某時(shí)刻,海監(jiān)15船發(fā)現(xiàn)日本船向在點(diǎn)A周圍海域作業(yè)的我漁船編隊(duì)靠近,上級(jí)指示漁政船310立刻全速前往點(diǎn)A周圍海域執(zhí)法,海監(jiān)15船原地監(jiān)測.漁政船310走到B正東方向D處時(shí),測得距離B為4
2
海里.若漁政船以23海里/小時(shí)的速度航行,求其到達(dá)點(diǎn)A所需的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,已知A(-1,2),B(3,4),C(-2,5).
(1)求BC邊上的高AH所在的直線方程; 
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知C
 
x
10
=C
 
x-2
8
+C
 
x-1
8
+C
 
2x-3
9
,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x+
2-x
3
=
4
3
,則xlog32=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x-1)2+(y+1)2=1的圓心坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊答案