3.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-6x+6,x≥0\\ 3x+4,x<0\end{array}\right.$,若互不相等的實(shí)數(shù)x1,x2,x3滿(mǎn)足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是( 。
A.$({\frac{11}{6},6}]$B.$({\frac{11}{3},6})$C.$({\frac{20}{3},\frac{26}{3}})$D.$({\frac{20}{3},\frac{26}{3}}]$

分析 根據(jù)二次函數(shù)性質(zhì),一次函數(shù)性質(zhì),得出x1+x2+x3的取值范圍即可.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-6x+6,x≥0\\ 3x+4,x<0\end{array}\right.$,
∴根據(jù)二次函數(shù)性質(zhì)得出x2+x3=6,
利用函數(shù)y=3x+4得出:x1=0時(shí),x1+x2+x3<6,
y=(x-3)2-3,
3x1+4=-3,x1=$-\frac{7}{3}$,
∴x1+x2+x3>$-\frac{7}{3}$+6=$\frac{11}{3}$,
∴x1+x2+x3的取值范圍是($\frac{11}{3}$,6),
故選:B.

點(diǎn)評(píng) 本題考察了函數(shù)性質(zhì),解析式的運(yùn)用,關(guān)鍵理解f(x1)=f(x2)=f(x3),含義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={1,2,3,4},集合B={x|x∈A,且2x∉A},則A∩B=( 。
A.{1,2}B.{1,3}C.{2,4}D.{3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)為F(-c,0),離心率為$\frac{{\sqrt{3}}}{3}$,點(diǎn)M在橢圓上且位于第一象限,直線(xiàn)FM被圓x2+y2=$\frac{b^2}{4}$截得的線(xiàn)段的長(zhǎng)為c,|FM|=$\frac{{4\sqrt{3}}}{3}$.
(Ⅰ)求直線(xiàn)FM的斜率;
(Ⅱ)求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知{an}為等比數(shù)列,下列結(jié)論
①a3+a5≥2a4
②$a_3^2+a_5^2≥2a_4^2$;
③若a3=a5,則a1=a2;
④若a5>a3,則a7>a5
其中正確結(jié)論的序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓心在直線(xiàn)y=$\frac{5}{4}$x上的圓C與x軸相切,與y軸正半軸交于M,N兩點(diǎn)(點(diǎn)M在N的下方),且|MN|=3.
(1)求圓C的方程;
(2)過(guò)點(diǎn)M任作一條直線(xiàn)與橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1交于A、B兩點(diǎn),設(shè)直線(xiàn)AN、BN的斜率分別為k1,k2,則k1+k2是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知a+b(a>0,b>0)是函數(shù)f(x)=-x+30-3a的零點(diǎn),則使得$\frac{1}{a}+\frac{1}$取得最小值的有序?qū)崝?shù)對(duì)(a,b)是  ( 。
A.(10,5)B.(7,2)C.(6,6)D.(5,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知橢圓$\frac{x^2}{8}+\frac{y^2}{b^2}=1(0<b<2\sqrt{2})$與y軸交于A,B兩點(diǎn),點(diǎn)F為該橢圓的一個(gè)焦點(diǎn),則△ABF面積的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離多1.
(Ⅰ)求點(diǎn)P的軌跡E的方程;
(Ⅱ)過(guò)點(diǎn)F任作直線(xiàn)l,交曲線(xiàn)E于A,B兩點(diǎn),交直線(xiàn)x=-1于點(diǎn)C,M是AB的中點(diǎn),求證:|CA|•|CB|=|CM|•|CF|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD⊥底面ABCD,PA⊥AD,E,F(xiàn),H分別為AB,PC,BC的中點(diǎn)
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:平面PAH⊥平面DEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案