13.如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD⊥底面ABCD,PA⊥AD,E,F(xiàn),H分別為AB,PC,BC的中點(diǎn)
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:平面PAH⊥平面DEF.

分析 (Ⅰ)取CD中點(diǎn)N,連接FN,EN,則FN∥PD,EN∥AD,故而平面EFN∥平面PAD,所以EF∥平面PAD;
(Ⅱ)由側(cè)面PAD⊥底面ABCD可得PA⊥平面ABCD,故PA⊥DE,由正方形的性質(zhì)可得DE⊥AH,故DE⊥平面PAH,于是平面PAH⊥平面DEF.

解答 證明:(Ⅰ)取CD中點(diǎn)N,連接FN,EN.
∵在△CPD中,F(xiàn),N為中點(diǎn),∴FN∥PD.
∵正方形ABCD中,E,N為中點(diǎn),
∴EN∥AD,
∵EN?平面EFN,F(xiàn)N?平面EFN,EN∩FN=N,PD?平面PAD,AD?平面PAD,PD∩AD=D,
∴平面EFN∥平面PAD,∵EF?平面EFN,
∴EF∥平面PAD.
(Ⅱ)∵側(cè)面PAD⊥底面ABCD,PA⊥AD,側(cè)面PAD∩底面ABCD=AD,
∴PA⊥底面ABCD,∵DE?底面ABCD,
∴DE⊥PA,
∵E,H分別為正方形ABCD邊AB,BC中點(diǎn),
∴Rt△ABH≌Rt△ADE,則∠BAH=∠ADE,∴∠BAH+∠AED=90°,則DE⊥AH,
∵PA?平面PAH,AH?平面PAH,PA∩AH=A,
∴DE⊥平面PAH,∵DE?平面EFD,
∴平面PAH⊥平面DEF.

點(diǎn)評(píng) 本題考查了線面平行,面面垂直的性質(zhì)與判定,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}-6x+6,x≥0\\ 3x+4,x<0\end{array}\right.$,若互不相等的實(shí)數(shù)x1,x2,x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是(  )
A.$({\frac{11}{6},6}]$B.$({\frac{11}{3},6})$C.$({\frac{20}{3},\frac{26}{3}})$D.$({\frac{20}{3},\frac{26}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓C:$\frac{x^2}{4}+{y^2}$=1,點(diǎn)M(x0,y0)是橢圓C上一點(diǎn),圓M:(x-x02+(y-y02=r2
(1)若圓M與x軸相切于橢圓C的右焦點(diǎn),求圓M的方程;
(2)從原點(diǎn)O向圓M:(x-x02+(y-y02=$\frac{4}{5}$作兩條切線分別與橢圓C交于P,Q兩點(diǎn)(P,Q不在坐標(biāo)軸上),設(shè)OP,OQ的斜率分別為k1,k2
①試問k1k2是否為定值?若是,求出這個(gè)定值;若不是,說明理由;
②求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知Sn為數(shù)列{an}的前n項(xiàng)和,若Sn=nan+1+2n,則數(shù)列{$\frac{1}{n({a}_{n}-{a}_{n+1})}$}的前n項(xiàng)和Tn=$\frac{3}{2}$-$\frac{2}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)變量x,y滿足下列條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+1≥0}\\{y≥0}{\;}\end{array}\right.$,則Z=2x-y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知x,y滿足約束條件$\left\{\begin{array}{l}{2x-y+3≥0}\\{x≤1}\\{x-y≤0}\end{array}\right.$,則z=3x-2y的最小值是( 。
A.-7B.-3C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C1:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0),A、B為橢圓的左右頂點(diǎn),拋物線C2:y=-x2+1的頂點(diǎn)恰是橢圓的一個(gè)焦點(diǎn),且點(diǎn)A、B在拋物線上.
(1)求橢圓的方程;
(2)過點(diǎn)B的直線l與C1在x軸的上方交于P點(diǎn),與C2在x軸的下方交于Q點(diǎn),若AP⊥AQ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,z1=1+2i,i為虛數(shù)單位,則z1z2=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\sqrt{{(x-1)}^{2}}$+$\root{5}{{(x+1)}^{5}}$的值域是[2,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案