8.已知$\frac{sinα+3cosα}{3cosα-sinα}=5$,則tanα=2,sin2α-sinαcosα=$\frac{2}{5}$.

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得所給式子的值.

解答 解:∵已知$\frac{sinα+3cosα}{3cosα-sinα}=5$=$\frac{tanα+3}{3-tanα}$,則tanα=2.
sin2α-sinαcosα=$\frac{{sin}^{2}α-tanα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α-tanα}{{tan}^{2}α+1}$=$\frac{2}{5}$,
故答案為:2;$\frac{2}{5}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a>0,b<0,c<0,則直線ax+by+c=0必不通過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在Rt△AOB中,∠OAB=$\frac{π}{6}$,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉(zhuǎn)得到,且二面角B-AO-C是直二面角,動點D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)求CD與平面AOB所成角的正弦的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.兩條異面直線a,b所成角為60°,則過一定點P,與直線a,b都成60°角的直線有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x2-2x-|x-1-a|-|x-2|+4.
(Ⅰ)當(dāng)a=1時,求f(x)的最小值
(Ⅱ)對?x∈R,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合M={x|x2-4x+3<0},N={x|log2x<1},則M∪N=(0,3),M∩N=(1,2),∁RM=(-∞,1]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=4cos2$\frac{x}{2}$cos($\frac{π}{2}$-x)-2sinx-|ln(x+1)|的零點個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.橢圓$\frac{{x}^{2}}{4}$+y2=1的長軸長為( 。
A.4B.2C.1D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)a是實數(shù),g(x)是指數(shù)函數(shù),且g(x)的圖象過點(2,4),若f(x)=a-$\frac{2}{g(x)+1}$(x∈R).
(1)試證明:對于任意的a,f(x)在R上為增函數(shù);
(2)試確定a的值,使f(x)為奇函數(shù).

查看答案和解析>>

同步練習(xí)冊答案