17.已知函數(shù)$f(x)=2sin(2x+\frac{π}{4})-1$,求
(1)f(x)最小正周期及單調(diào)增區(qū)間.
(2)滿足不等式f(x)≥0的x取值范圍的集合.

分析 (1)由條件利用正弦函數(shù)的周期性、單調(diào)性,得出結(jié)論.
(2)由不等式可得sin(2x+$\frac{π}{4}$)≥$\frac{1}{2}$,故有2kπ+$\frac{π}{6}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{5π}{6}$,由此求得x取值范圍的集合.

解答 解:(1)由函數(shù)$f(x)=2sin(2x+\frac{π}{4})-1$,可得它的最小正周期為$\frac{2π}{2}$=π,
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得 kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,
可得函數(shù)的增區(qū)間為[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.
(2)不等式f(x)≥0,即 sin(2x+$\frac{π}{4}$)≥$\frac{1}{2}$,∴2kπ+$\frac{π}{6}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{5π}{6}$,
求得kπ-$\frac{π}{24}$≤x≤kπ+$\frac{7π}{24}$,故不等式的解集為 {x|kπ-$\frac{π}{24}$≤x≤kπ+$\frac{7π}{24}$,k∈Z}.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的周期性、單調(diào)性,三角不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)y=f(x)的定義域?yàn)镮,如果存在[a,b]⊆I,使函數(shù)f(x)在[a,b]上的值域?yàn)閇ka,kb],k是正常數(shù),那么稱函數(shù)y=f(x),x∈I為閉函數(shù).
(Ⅰ)當(dāng)k=$\frac{1}{2}$時(shí),判斷函數(shù)f(x)=$\sqrt{x}$是否是閉函數(shù)?若是,則求出區(qū)間[a,b];
(Ⅱ)當(dāng)k=$\frac{1}{2}$時(shí).若函數(shù)f(x)=$\sqrt{x}$+t是閉函數(shù),求實(shí)數(shù)t的取值范圍;
(Ⅲ)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m是閉函數(shù)?若存在,求出實(shí)數(shù)m的范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知f(x)=$\frac{3}{{2}^{x}-1}$+k是奇函數(shù),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的長(zhǎng)軸為4,且過(guò)點(diǎn)$A(\sqrt{2},1)$
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)O為原點(diǎn),若點(diǎn)P在曲線C上,點(diǎn)Q在直線y=2上,且OP⊥OQ,試判斷直線PQ與圓x2+y2=2的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某高三年級(jí)從甲(文)乙(理)兩個(gè)年級(jí)組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)(滿分:100分)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85分,乙組學(xué)生成績(jī)的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓C中心在原點(diǎn),焦點(diǎn)在x軸上,一條經(jīng)過(guò)點(diǎn)$(3,-\sqrt{5})$且傾斜角余弦值為$-\frac{2}{3}$的直線l交橢圓于A,B兩點(diǎn),交x軸于M點(diǎn),又$\overrightarrow{AM}=2\overrightarrow{MB}$.
(1)求直線l的方程;
(2)求橢圓C長(zhǎng)軸的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.橢圓滿足這樣的光學(xué)性質(zhì):從橢圓的一個(gè)焦點(diǎn)發(fā)射光線,經(jīng)橢圓反射后,反射光線經(jīng)過(guò)橢圓的另一焦點(diǎn).現(xiàn)在設(shè)有一個(gè)水平放置的橢圓形臺(tái)球盤,滿足方程$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,點(diǎn)A、B是它的兩個(gè)焦點(diǎn),當(dāng)靜止的小球放在A處,從點(diǎn)A沿直線出發(fā),經(jīng)橢圓壁反彈后,再回到點(diǎn)A時(shí),小球經(jīng)過(guò)的路程是( 。
A.20B.18C.2D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.正六棱錐的底面周長(zhǎng)為24,斜高SH與高SO所成的角為30°.
求:(1)棱錐的高;(2)斜高;(3)側(cè)棱長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)常數(shù)λ>0,a>0,函數(shù)f(x)=$\frac{{x}^{2}}{λ+x}$-alnx.當(dāng)a=$\frac{3}{4}$λ時(shí),若f(x)最小值為0,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案