12.某高三年級(jí)從甲(文)乙(理)兩個(gè)年級(jí)組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)(滿分:100分)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85分,乙組學(xué)生成績(jī)的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)取兩名學(xué)生,求甲組至少有一名學(xué)生的概率.

分析 (1)利用莖葉圖,和平均數(shù)的定義即可得到x的值,根據(jù)中位數(shù)的定義即可求出y的值,
(2)從這五名學(xué)生任意抽取兩名學(xué)生共有10種情況,其中甲組至少有一名學(xué)生共有7種情況,根據(jù)概率公式計(jì)算即可.

解答 解(1)∵甲組學(xué)生的平均分是85,
∴$\frac{92+96+80+80+x+85+79+78}{7}=85$.∴x=5.…(2分)
∵乙組學(xué)生成績(jī)的中位數(shù)是83,∴y=3.…(4分)
(2)甲組成績(jī)?cè)?0(分)以上的學(xué)生有兩名,分別記為A,B,
乙組成績(jī)?cè)?0(分)以上的學(xué)生有三名,分別記為C,D,E.…(6分)
從這五名學(xué)生任意抽取兩名學(xué)生共有10種情況:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E) …(8分)
其中甲組至少有一名學(xué)生共有7種情況:
(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E)
記“從成績(jī)?cè)?0(分)以上的學(xué)生中隨機(jī)抽取兩名學(xué)生,甲組至少有一名學(xué)生”為事件M,
則$P(M)=\frac{7}{10}$.…(12分)

點(diǎn)評(píng) 本小題主要考查莖葉圖、樣本均值、樣本中位數(shù)、概率等知識(shí),考查或然與必然的數(shù)學(xué)思想方法,以及數(shù)據(jù)處理能力、運(yùn)算求解能力和應(yīng)用意識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1,F(xiàn)1,F(xiàn)2是其兩個(gè)焦點(diǎn),點(diǎn)M、N在雙曲線上.
(1)若M、N的中點(diǎn)為(2,$\frac{9}{2}$),求直線MN的方程.
(2)若∠F1MF2=60°時(shí).求△F1MF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其中$\overrightarrow{a}$=(2cosx,1),$\overrightarrow$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及取得最大值時(shí)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)存溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e=2.718…為自然對(duì)數(shù)的底數(shù),k,b為常數(shù)).該食品在0℃的保鮮時(shí)間是192小時(shí),在16℃的保鮮時(shí)間是12小時(shí),若要使該食品的保鮮時(shí)間至少是96小時(shí),則儲(chǔ)存溫度x最大不能高于4℃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,已知A=30°,B=120°,b=5,解三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=2sin(2x+\frac{π}{4})-1$,求
(1)f(x)最小正周期及單調(diào)增區(qū)間.
(2)滿足不等式f(x)≥0的x取值范圍的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中心為原點(diǎn),一個(gè)焦點(diǎn)為$F(0,5\sqrt{2})$的橢圓截直線y=3x-2所得的弦的中點(diǎn)的橫坐標(biāo)為$\frac{1}{2}$,則橢圓的方程為( 。
A.$\frac{x^2}{25}+\frac{y^2}{75}=1$B.$\frac{x^2}{75}+\frac{y^2}{25}=1$C.$\frac{{2{x^2}}}{75}+\frac{{2{y^2}}}{25}=1$D.$\frac{{2{x^2}}}{25}+\frac{{2{y^2}}}{75}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:?x∈(0,$\frac{π}{2}$),使得cosx≥x,則該命題的否定是( 。
A.?x∈(0,$\frac{π}{2}$),使得cos x>xB.?x∈(0,$\frac{π}{2}$),使得cos x≥x
C.?x∈(0,$\frac{π}{2}$),使得cos x<xD.?x∈(0,$\frac{π}{2}$),使得cos x<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,曲線Γ由兩個(gè)橢圓T1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$和橢圓T2:$\frac{y^2}{b^2}+\frac{x^2}{c^2}=1({b>c>0})$組成,當(dāng)a,b,c成等比數(shù)列時(shí),稱曲線Γ為“貓眼曲線”.
(1)若貓眼曲線Γ過點(diǎn)$M({0,-\sqrt{2}})$,且a,b,c的公比為$\frac{{\sqrt{2}}}{2}$,求貓眼曲線Γ的方程;
(2)對(duì)于題(1)中的求貓眼曲線Γ,任作斜率為k(k≠0)且不過原點(diǎn)的直線與該曲線相交,交橢圓T1所得弦的中點(diǎn)為M,交橢圓T2所得弦的中點(diǎn)為N,求證:$\frac{{{k_{OM}}}}{{{k_{ON}}}}$為與k無關(guān)的定值;
(3)若斜率為$\sqrt{2}$的直線l為橢圓T2的切線,且交橢圓T1于點(diǎn)A,B,N為橢圓T1上的任意一點(diǎn)(點(diǎn)N與點(diǎn)A,B不重合),求△ABN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案