1.如圖,為一個半圓柱和一個半圓錐拼接而成的組合體的三視圖,則該組合體的體積為( 。
A.$\frac{8π}{3}$B.$\frac{4π}{3}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

分析 由已知中的三視圖可得該幾何體是一個半圓柱和一個半圓錐拼接而成的組合體,分別計算它們的體積,相加可得答案.

解答 解:已知中的三視圖可得該幾何體是一個半圓柱和一個半圓錐拼接而成的組合體,
半圓柱和半圓錐的底面半徑均為1,高均為2,
故半圓柱的體積為:$\frac{1}{2}π×2$=π,
半圓錐的體積為:$\frac{1}{3}$×$\frac{1}{2}π×2$=$\frac{1}{3}$π,
故組合體的體積V=$\frac{4π}{3}$,
故選:B

點評 本題考查的知識點是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若i是虛數(shù)單位,復數(shù)z滿足(1-i)z=1,則|2z-3|=(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知{an}為等差數(shù)列,公差為1,且a5是a3與a11的等比中項,則a1=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在直角坐標系中,定義兩點A(x1,y1),B(x2,y2)之間的“直角距離”為d(A,B)=|x1-x2|+|y1-y2|.
現(xiàn)有以下命題:
①若A,B是x軸上兩點,則d(A,B)=|x1-x2|;
②已知點A(1,2),點B在線段x+y=1(x∈[0,1])上,則d(A,B)為定值;
③已知點A(2,1),點B在橢圓$\frac{{x}^{2}}{3}$+y2=1上,則d(A,B)的取值范圍是(1,5);
④若|AB|表示A,B兩點間的距離,那么|AB|≥$\frac{\sqrt{2}}{2}$d(A,B).
其中真命題的是①②③④(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=x(1-x),若數(shù)列{an}滿足a1=$\frac{1}{2}$,且an+1=$\frac{1}{1-{a}_{n}}$,則f(a2015)+f(a2016)=( 。
A.-8B.8C.-4D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,在四棱錐S-ABCD中,找出并表示所有的異面直線和二面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知定義在(-1,1)上的奇函數(shù),在[0,1)上單調遞增,則不等式f(x2)<f(2x)解集為(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知等比數(shù)列{an}的各項均為正數(shù)且公比大于1,前n項積為Tn,且a2a4=a3,則使得Tn>1的n的最小值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若函數(shù)$f(x)=tan(ωx+\frac{π}{4})(ω>0)$的最小正周期為2π,則ω=$\frac{1}{2}$;$f(\frac{π}{3})$=2+$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案